manchester-encoding/encode.py

141 lines
3.9 KiB
Python
Executable File

#!/usr/bin/env python3
""" @package docstring
Manchester encoder
Encodes a file using the manchester encoding and outputs it as audio file
See https://www.youtube.com/watch?v=8BhjXqw9MqI&list=PLowKtXNTBypH19whXTVoG3oKSuOcw_XeW&index=3
and following videos by awesome Ben Eater
Very slow and inefficient implementation, meant only to be clear and didactic
@author Daniele Verducci <daniele.verducci@ichibi.eu>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
import logging
NAME = 'manchester-encoder'
VERSION = '0.1'
DESCRIPTION = 'Encodes a file using the manchester encoding and outputs it as audio file'
FRAME_DELIMITER = 129 # (1, 0, 0, 0, 0, 0, 0, 1)
class Main:
def __init__(self):
self._log = logging.getLogger('main')
def run(self, inputFile, outputFile, clock):
# Open output file
# Read input file
bytesToEncode = []
with open(inputFile, 'rb') as f:
position = 0
while 1:
byte = f.read(1)
if not byte:
# Finished reading file
# Terminate with delimiter and exit
self.encodeByte(FRAME_DELIMITER)
break
byte = byte[0]
# Every 64 bytes, outputs a frame delimiter: 01111110
# This is used by receiver to syncronize to the start of a byte
if position % 64 == 0:
self.encodeByte(FRAME_DELIMITER)
position = position + 1
# Encode byte
self.encodeByte(byte)
self._log.info('Completed')
def encodeByte(self, byte):
# Encodes a byte with the Mancester Encoding
# Note that the byte is read from the most important to the least important bit
# Es: 10000010 is not 130, but 65
consecutiveOnes = 0
for x in range(8):
# Shift byte and take last bit (with bitwise AND)
lastBit = ( byte >> x ) & 1
# Write bit
self.encodeBit(lastBit)
# If we have 5 consecutive "1", add a 0 after, to avoid being interpreted as a frame delimiter
if lastBit:
consecutiveOnes = consecutiveOnes + 1
else:
consecutiveOnes = 0
if consecutiveOnes == 5:
self.encodeBit(0)
consecutiveOnes = 0
def outputPreamble(self):
# Outputs the preable: a sequence of 64 "1" and "0" used to facilitate the receiver
# syncronizing on our clock. The sequence starts with 1 and ends with 0
for x in range(64):
self.encode(x % 2 == 0)
def encodeBit(self, bit):
# Encodes a single bit in a pair of bits to be written on the media.
# The "1" is encoded as a transition from 0 to 1 (01) while the "0" is endoded as a
# transition from 1 to 0 (10)
if bit:
self.out(0)
self.out(1)
else:
self.out(1)
self.out(0)
def out(self, encodedBit):
# Write already encoded bit on the media
if encodedBit:
print('', end='')
else:
print('_', end='')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
prog = NAME + '.py',
description = NAME + ' ' + VERSION + '\n' + DESCRIPTION,
formatter_class = argparse.RawTextHelpFormatter
)
parser.add_argument('inputFile', help="file to encode")
parser.add_argument('outputFile', help="audio file to write")
parser.add_argument('clock', help="clock speed, in hz")
parser.add_argument('-v', '--verbose', action='store_true', help="verbose output")
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.INFO)
else:
logging.basicConfig()
main = Main()
main.run(args.inputFile, args.outputFile, args.clock)
sys.exit(0)