manchester-encoding/decode.py
Daniele Verducci (Slimpenguin) a99a1b9763 Noise and silence-resistant
2022-06-05 07:44:54 +02:00

248 lines
7.9 KiB
Python
Executable File

#!/usr/bin/env python3
""" @package docstring
Manchester decoder
Decodes a file encoded with the manchester code
See https://www.youtube.com/watch?v=8BhjXqw9MqI&list=PLowKtXNTBypH19whXTVoG3oKSuOcw_XeW&index=3
and following videos by awesome Ben Eater
Very slow and inefficient implementation, meant only to be clear and didactic
@author Daniele Verducci <daniele.verducci@ichibi.eu>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
import logging
import wave
import struct
NAME = 'manchester-decoder'
VERSION = '0.1'
DESCRIPTION = 'Decodes a file using the manchester encoding'
FRAME_DELIMITER = 126 # (01111110)
FRAME_DELIMITER_EVERY_BYTES = 64
PREAMBLE_DURATION = 512
# Values nearest to zero than this are not considered: set to more than noise, less than signal
AUDIO_MIN_VOLUME = 12288
# The 0 value: values less than this are considered 0, more than this 1. This should be
# auto-adjusting (to leave out the DC component, in hw one would use a transformer)
ZERO_POINT = 0
class Main:
def __init__(self):
self._log = logging.getLogger('main')
self.clockDuration = 0
def run(self, inputFile, outputFile):
# Open input audio file
self.audioSource = wave.open(inputFile,'r')
# Open output file
with open(outputFile,'wb') as outf:
self.outputSink = outf
try:
self.syncWithClock()
self._log.info("Found clock: clock duration is {}".format(self.clockDuration))
self.waitForStart()
self._log.info("Synced to first byte: start decoding actual data")
self.decodeActualData()
except ValueError as e:
self._log.error("Ran out of input data before completing initialization!")
self.audioSource.close()
self.outputSink.close()
def syncWithClock(self):
# Uses the preamble to obtain the clock duration
analyzedCycles = 0
while True:
(cycles, raising) = self.goToNextZeroCrossing(True)
analyzedCycles = analyzedCycles + cycles
self._log.debug("Found zero crossing after {}, raising: {}".format(cycles, raising))
if analyzedCycles > PREAMBLE_DURATION * self.clockDuration / 4:
# At this point we should have an idea of the clock duration, move on
return
def waitForStart(self):
# After the clock has been extimated, continue reading and wait for first delimiter
lastByte = 0
while True:
value = self.decodeBit()
# Shift the byte to left
lastByte = lastByte << 1
# Truncate the length to 8 bits
lastByte = lastByte & 255 # 0 11111111
# Add the read bit in the least significant position
if value:
lastByte = lastByte + 1
if lastByte == FRAME_DELIMITER:
# Found frame delimiter! We are in sync! YAY!
self._log.info("Found first frame delimiter")
return
def decodeActualData(self):
# From the bit after the FRAME_DELIMITER on, there is the actual data. Decode at groups of 8 bytes and write to file
position = 0 # We already consumed the first delimiter
try:
while True:
expectFrameDelimiter = position > 0 and position % FRAME_DELIMITER_EVERY_BYTES == 0
if expectFrameDelimiter:
decodedByte = self.decodeByte(True)
if decodedByte != FRAME_DELIMITER:
raise ValueError('Expecting a frame delimiter, found {} at position {}'.format(decodedByte, position))
self._log.debug('Found frame delimiter')
decodedByte = self.decodeByte(False)
try:
self.outputSink.write(bytes([decodedByte]))
except Exception as e:
self._log.error(e)
position = position + 1
except ValueError as e:
# Stream finished
# If last byte isn't a frame delimiter, throw error
self._log.info(e)
def decodeByte(self, expectFrameDelimiter=False):
# Decodes a byte (to be used _after_ the first frame delimiter was found)
decodedByte = 0
consecutiveOnes = 0
for x in range(8):
value = self.decodeBit()
# Shift the byte to left
decodedByte = decodedByte >> 1
# Truncate the length to 8 bits
decodedByte = decodedByte & 255 # 0 11111111
# Add the read bit in the least significant position
if value:
decodedByte = decodedByte + 128 #10000000
consecutiveOnes = consecutiveOnes + 1
else:
consecutiveOnes = 0
if consecutiveOnes == 5 and not expectFrameDelimiter:
# We found 5 1s: ignore next 0: has been added to avoid a real 01111110 byte to be interpreted as frame delimiter
if self.decodeBit():
# Should be 0!
raise ValueError('Found xx0111111 while not expecting a delimiter!')
return decodedByte
def decodeBit(self, allowSilence = False):
# Decodes a bit. Searches for the phase invertion at 75% to 125% of the clock cycle
bitDuration = 0
while True:
(duration, raising) = self.goToNextZeroCrossing(False)
bitDuration = bitDuration + duration
if bitDuration < self.clockDuration * 0.75:
# Ignore: half-cycle crossing due to two equal digits one near the other
continue
if bitDuration > self.clockDuration * 1.25:
# Lost tracking!
raise Exception("Lost tracking! No phase inversion found between {} and {} samples from the last one".format(self.clockDuration * 0.75, self.clockDuration * 1.25))
# This is our phase inversion signal
return raising
# Reads and decodes 2 raw bits into 1 decoded bit. 01 (raising) = 1, 10 (falling) = 0
# Works only once clock is synced
# The bits are read at 1/4 and 3/4 of clock cycle
firstHalfFrame = self.audioSource.readframes((self.clockDuration/2) - 1)
if not firstHalfFrame:
raise ValueError('No more data to read')
secondHalfFrame = self.audioSource.readframes(1)
if not secondHalfFrame:
raise ValueError('No more data to read')
firstHalfRawBit = int(struct.unpack('<h', firstHalfFrame)[0]) > ZERO_POINT
secondHalfRawBit = int(struct.unpack('<h', secondHalfFrame)[0]) > ZERO_POINT
if not firstHalfRawBit and secondHalfRawBit:
return True
elif firstHalfRawBit and not secondHalfRawBit:
return True
else:
# Lost sync!!!
raise Exception()
def goToNextZeroCrossing(self, adjustClockDuration):
# Find the next zero crossing and returns:
# (cycles since last inversion, True if is raising, False if is falling)
cyclesSinceLastInversion = 0
prev = None
while True:
frame = self.audioSource.readframes(1)
if not frame:
raise ValueError('No more data to read')
lvl = int(struct.unpack('<h', frame)[0])
if lvl > AUDIO_MIN_VOLUME or lvl < -AUDIO_MIN_VOLUME:
v = lvl > AUDIO_MIN_VOLUME
if prev == None:
prev = v
if v != prev:
# Zero-point crossing!
if adjustClockDuration:
self.clockDuration = (self.clockDuration + cyclesSinceLastInversion) / 2
return (cyclesSinceLastInversion, v)
# Count only cycles after first valid signal
if prev != None:
cyclesSinceLastInversion = cyclesSinceLastInversion + 1
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
prog = NAME + '.py',
description = NAME + ' ' + VERSION + '\n' + DESCRIPTION,
formatter_class = argparse.RawTextHelpFormatter
)
parser.add_argument('inputFile', help="audio file to decode (in wav format)")
parser.add_argument('outputFile', help="decoded file to write")
parser.add_argument('-v', '--verbose', action='store_true', help="verbose output")
parser.add_argument('-d', '--debug', action='store_true', help="even more verbose output, for debug")
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.INFO)
elif args.debug:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig()
main = Main()
main.run(args.inputFile, args.outputFile)
sys.exit(0)