#!/usr/bin/env python3 # PYTHON RACING SIMULATOR # Inspired by https://www.youtube.com/watch?v=KkMZI5Jbf18 # Copyright (C) 2023 Daniele Verducci # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # REQUIREMENTS: # pip install pysdl2 pysdl2-dll import sdl2.ext import math import time RENDER_WIDTH = 640 RENDER_HEIGHT = 480 RENDER_SCALE = 2 WIN_WIDTH = RENDER_WIDTH * RENDER_SCALE WIN_HEIGHT = RENDER_HEIGHT * RENDER_SCALE SKY_COLOR = [0,127,255] GRASS_COLOR = [0,127,0] KERB_COLOR_1 = [255,0,0] KERB_COLOR_2 = [255,255,255] ROAD_COLOR = [127,127,127] KERB_WIDTH = 0.05 PLAYER_MAX_SPEED = 2.0 PLAYER_SPEED_INCREMENT = 0.5 TRACK_SECTIONS_INTERPOLATION_LENGTH = 2.0 # Track: array of sections. Section: [curvature, length] TRACK = [ {"curv": 0.0, "dist": 1}, {"curv": 1.0, "dist": 5}, {"curv": -1.0, "dist": 5}, {"curv": 0.0, "dist": 1}, {"curv": -0.3, "dist": 4}, {"curv": 3.3, "dist": 4}, ] class Main: def __init__(self): # Check data for section in TRACK: if section["curv"] != 0.0 and section["dist"] < TRACK_SECTIONS_INTERPOLATION_LENGTH * 2: print("Track section cannot be interpolated!", section) exit(1) # Print instructions print('RACING SIMULATOR by penguin86\n\nMovement: up, down, left, right\n\nFPS:') # Graphics sdl2.ext.init() self.window = sdl2.SDL_CreateWindow(b"Racing simulator", 100, 100, WIN_WIDTH, WIN_HEIGHT,sdl2.SDL_WINDOW_SHOWN) self.renderer = sdl2.SDL_CreateRenderer(self.window, -1,sdl2.SDL_RENDERER_ACCELERATED |sdl2.SDL_RENDERER_PRESENTVSYNC) self.surface = sdl2.SDL_CreateRGBSurface(0,WIN_WIDTH,WIN_HEIGHT,32,0,0,0,0) # Player self.playerSpeed = 0.0 self.distance = 0.0 # Interpolated values self.interpolatedRoadCurvature = 0.0 def run(self): lastFpsCalcTime = 0 lastDraw = 0 elapsedTime = 0 frames = 0 running = True while running: events = sdl2.ext.get_events() for event in events: if event.type == sdl2.SDL_QUIT or (event.type == sdl2.SDL_KEYDOWN and event.key.keysym.sym == sdl2.SDLK_ESCAPE): running = False break # Keys keystate = sdl2.SDL_GetKeyboardState(None) if keystate[sdl2.SDL_SCANCODE_LEFT]: print("left") elif keystate[sdl2.SDL_SCANCODE_RIGHT]: print("right") elif keystate[sdl2.SDL_SCANCODE_UP]: self.playerSpeed = min(self.playerSpeed + PLAYER_SPEED_INCREMENT * elapsedTime, PLAYER_MAX_SPEED) elif keystate[sdl2.SDL_SCANCODE_DOWN]: self.playerSpeed = max(self.playerSpeed - PLAYER_SPEED_INCREMENT * 4 * elapsedTime, 0) # *4: brakes more than accelerates # Draw self.draw() # Update speed and distance elapsedTime = time.time() - lastDraw lastDraw = time.time() self.distance = self.distance + self.playerSpeed * elapsedTime # Calculate FPS frames = frames + 1 if time.time() - lastFpsCalcTime > 1: fps = frames/(time.time() - lastFpsCalcTime) print(int(fps)) frames = 0 lastFpsCalcTime = time.time() return 0 def draw(self): self.drawRoad() self.drawCar() sdl2.SDL_RenderPresent(self.renderer) def drawRoad(self): # Sky sdl2.SDL_SetRenderDrawColor(self.renderer, SKY_COLOR[0], SKY_COLOR[1], SKY_COLOR[2], sdl2.SDL_ALPHA_OPAQUE) sdl2.SDL_RenderClear(self.renderer) # Floor sdl2.SDL_SetRenderDrawColor(self.renderer, ROAD_COLOR[0], ROAD_COLOR[1], ROAD_COLOR[2], sdl2.SDL_ALPHA_OPAQUE) sdl2.SDL_RenderFillRect(self.renderer, sdl2.SDL_Rect(0, int(WIN_HEIGHT/2), WIN_WIDTH, int(WIN_HEIGHT))) # Find current track section trackSectionsSumDist = 0 sectionNo = 0 currentSection = None for section in TRACK: trackSectionsSumDist = trackSectionsSumDist + section["dist"] sectionNo = sectionNo + 1 if self.distance < trackSectionsSumDist: currentSection = section break if not currentSection: # Reached the last segment: loop back to first one self.distance = 0 currentSection = TRACK[0] # Calculate road center based on section distanceDrivenInThisSection = self.distance - trackSectionsSumDist + currentSection["dist"] if distanceDrivenInThisSection < TRACK_SECTIONS_INTERPOLATION_LENGTH: # First part: interpolates from straight to current section curvature value self.interpolatedRoadCurvature = currentSection["curv"] * (distanceDrivenInThisSection / TRACK_SECTIONS_INTERPOLATION_LENGTH) print('enter', (distanceDrivenInThisSection / TRACK_SECTIONS_INTERPOLATION_LENGTH)) elif distanceDrivenInThisSection > currentSection["dist"] - TRACK_SECTIONS_INTERPOLATION_LENGTH: # Last part: interpolates from current section curvature value to straight delta = currentSection["dist"] - TRACK_SECTIONS_INTERPOLATION_LENGTH distanceDrivenInThisPart = distanceDrivenInThisSection - delta self.interpolatedRoadCurvature = currentSection["curv"] * (1 - (distanceDrivenInThisPart / TRACK_SECTIONS_INTERPOLATION_LENGTH)) #print([sectionNo, 'LAST', self.interpolatedRoadCurvature, currentSection["curv"]]) print(['exit', ((distanceDrivenInThisPart / TRACK_SECTIONS_INTERPOLATION_LENGTH)), delta, distanceDrivenInThisPart, distanceDrivenInThisSection]) # Draw road for y in range(int(RENDER_HEIGHT/2), RENDER_HEIGHT): perspectiveMult = (y - RENDER_HEIGHT / 2) / (RENDER_HEIGHT / 2) * 0.8 + 0.2 # Range 0.2 - 1.0 roadWidth = 0.6 roadWidthPixels = roadWidth * RENDER_WIDTH * perspectiveMult roadCenter = ((self.interpolatedRoadCurvature * 2) * math.pow(1.0 - perspectiveMult, 3)) + self.interpolatedRoadCurvature / 8 roadCenterPixels = roadCenter * RENDER_WIDTH + RENDER_WIDTH / 2 kerbWidth = KERB_WIDTH * RENDER_WIDTH * perspectiveMult # Kerb color: Calculate perspective: the lines near the user are taller than the one further away # This is a modified sine, "stretched" based on the distance (the y axis) inverter = math.cos(50.0 * math.pow(1.0 - perspectiveMult, 2) + self.distance * 30) if inverter > 0.7 or inverter < -0.7: sdl2.SDL_SetRenderDrawColor(self.renderer, KERB_COLOR_1[0], KERB_COLOR_1[1], KERB_COLOR_1[2], sdl2.SDL_ALPHA_OPAQUE) else: sdl2.SDL_SetRenderDrawColor(self.renderer, KERB_COLOR_2[0], KERB_COLOR_2[1], KERB_COLOR_2[2], sdl2.SDL_ALPHA_OPAQUE) # Left Kerb x = roadCenterPixels - roadWidthPixels / 2 - kerbWidth self.drawScaledHLine(x, y, kerbWidth) # Right Kerb x = roadCenterPixels + roadWidthPixels / 2 self.drawScaledHLine(x, y, kerbWidth) # Grass color: Calculate perspective: the lines near the user are taller than the one further away # This is a modified sine, "stretched" based on the distance (the y axis) if math.sin(50.0 * math.pow(1.0 - perspectiveMult, 2) + self.distance * 30) > 0: sdl2.SDL_SetRenderDrawColor(self.renderer, GRASS_COLOR[0], GRASS_COLOR[1], GRASS_COLOR[2], sdl2.SDL_ALPHA_OPAQUE) else: sdl2.SDL_SetRenderDrawColor(self.renderer, GRASS_COLOR[0] + 63, GRASS_COLOR[1] + 63, GRASS_COLOR[2] + 63, sdl2.SDL_ALPHA_OPAQUE) # Left Grass xEnd = roadCenterPixels - roadWidthPixels / 2 - kerbWidth self.drawScaledHLine(0, y, xEnd) # xEnd = length, because xStart = 0 # Right Grass x = roadCenterPixels + roadWidthPixels / 2 + kerbWidth length = RENDER_WIDTH - x self.drawScaledHLine(x, y, length) def drawCar(self): return def drawScaledHLine(self, x, y, length): sdl2.SDL_RenderFillRectF(self.renderer, sdl2.SDL_FRect(x * RENDER_SCALE, y * RENDER_SCALE, length * RENDER_SCALE, RENDER_SCALE)) if __name__ == '__main__': try: main = Main() main.run() except KeyboardInterrupt: exit(0)