Initial commit
282
v1/raycaster.py
Executable file
@ -0,0 +1,282 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# RAYCASTER
|
||||
# Inspired by https://www.youtube.com/watch?v=gYRrGTC7GtA
|
||||
#
|
||||
# pip install pysdl2 pysdl2-dll
|
||||
|
||||
import sys
|
||||
import sdl2.ext
|
||||
import math
|
||||
import time
|
||||
|
||||
MAP_WIN_WIDTH = 640
|
||||
MAP_WIN_HEIGHT = 640
|
||||
RAYCAST_WIN_WIDTH = 800
|
||||
RAYCAST_WIN_HEIGHT = 480
|
||||
DUNGEON_WIDTH = MAP_WIN_WIDTH
|
||||
DUNGEON_HEIGHT = MAP_WIN_HEIGHT
|
||||
PLAYER_SPEED = 10
|
||||
PLAYER_ROTATION_SPEED = 0.17
|
||||
RAY_LENGTH = 100
|
||||
MAP_SCALE = 40
|
||||
|
||||
MAP = [
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
]
|
||||
MAP_SIZE = 16
|
||||
DOF = 2*MAP_SIZE # Depth Of Field
|
||||
|
||||
class Main:
|
||||
|
||||
def __init__(self):
|
||||
# Check valid map
|
||||
if len(MAP) != MAP_SIZE * MAP_SIZE:
|
||||
raise ValueError("Map size is {}, but should be a power of {}".format(len(MAP), MAP_SIZE))
|
||||
|
||||
# Graphics
|
||||
sdl2.ext.init()
|
||||
self.mapWindow = sdl2.ext.Window("2D Map", size=(MAP_WIN_WIDTH, MAP_WIN_HEIGHT))
|
||||
self.mapWindow.show()
|
||||
self.mapSurface = self.mapWindow.get_surface()
|
||||
|
||||
self.raycastWindow = sdl2.ext.Window("3D View", size=(RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT))
|
||||
self.raycastWindow.show()
|
||||
self.raycastSurface = self.raycastWindow.get_surface()
|
||||
|
||||
# Player
|
||||
self.player_position = {"x": int(DUNGEON_WIDTH/2), "y": int(DUNGEON_HEIGHT/2), "r": 0} # r is rotation in radiants
|
||||
|
||||
return
|
||||
|
||||
def run(self):
|
||||
lastFpsCalcTime = 0
|
||||
frames = 0
|
||||
|
||||
running = True
|
||||
while running:
|
||||
events = sdl2.ext.get_events()
|
||||
for event in events:
|
||||
if event.type == sdl2.SDL_QUIT:
|
||||
running = False
|
||||
break
|
||||
if event.type == sdl2.SDL_KEYDOWN:
|
||||
# Rotate player
|
||||
if event.key.keysym.sym == sdl2.SDLK_LEFT:
|
||||
self.player_position["r"] = self.player_position["r"] - PLAYER_ROTATION_SPEED
|
||||
elif event.key.keysym.sym == sdl2.SDLK_RIGHT:
|
||||
self.player_position["r"] = self.player_position["r"] + PLAYER_ROTATION_SPEED
|
||||
|
||||
# Compute deltax and deltay based on player direction
|
||||
player_delta_x = math.cos(self.player_position["r"]) * PLAYER_SPEED
|
||||
player_delta_y = math.sin(self.player_position["r"]) * PLAYER_SPEED
|
||||
|
||||
# Move player based on its direction
|
||||
if event.key.keysym.sym == sdl2.SDLK_UP:
|
||||
self.player_position["y"] = int(self.player_position["y"] + player_delta_y)
|
||||
self.player_position["x"] = int(self.player_position["x"] + player_delta_x)
|
||||
elif event.key.keysym.sym == sdl2.SDLK_DOWN:
|
||||
self.player_position["y"] = int(self.player_position["y"] - player_delta_y)
|
||||
self.player_position["x"] = int(self.player_position["x"] - player_delta_x)
|
||||
|
||||
# Limit position into dungeon bounds
|
||||
if self.player_position["x"] < 0:
|
||||
self.player_position["x"] = 0
|
||||
if self.player_position["x"] > DUNGEON_WIDTH:
|
||||
self.player_position["x"] = DUNGEON_WIDTH
|
||||
if self.player_position["y"] < 0:
|
||||
self.player_position["y"] = 0
|
||||
if self.player_position["y"] > DUNGEON_HEIGHT:
|
||||
self.player_position["y"] = DUNGEON_HEIGHT
|
||||
if self.player_position["r"] > 2*math.pi:
|
||||
self.player_position["r"] = 0
|
||||
if self.player_position["r"] < 0:
|
||||
self.player_position["r"] = 2*math.pi
|
||||
|
||||
self.draw()
|
||||
self.mapWindow.refresh()
|
||||
self.raycastWindow.refresh()
|
||||
|
||||
# Calculate FPS
|
||||
frames = frames + 1
|
||||
if time.time() - lastFpsCalcTime > 1:
|
||||
fps = frames/(time.time() - lastFpsCalcTime)
|
||||
print(int(fps))
|
||||
frames = 0
|
||||
lastFpsCalcTime = time.time()
|
||||
|
||||
return 0
|
||||
|
||||
def draw(self):
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,0,0,255)) # Clears map screen
|
||||
sdl2.ext.draw.fill(self.raycastSurface, sdl2.ext.Color(0,0,128,255), (0, 0, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws ceiling)
|
||||
sdl2.ext.draw.fill(self.raycastSurface, sdl2.ext.Color(0,128,0,255), (0, RAYCAST_WIN_HEIGHT/2, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws floor)
|
||||
|
||||
self.draw2Dmap()
|
||||
self.drawPlayer()
|
||||
self.drawRays()
|
||||
|
||||
def drawPlayer(self):
|
||||
# Player in 2D map
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,255,0,255), (self.player_position["x"] - 2, self.player_position["y"] - 2, 4, 4))
|
||||
# Player line of sight in 2D map
|
||||
ray = {
|
||||
"x": int(self.player_position["x"] + math.cos(self.player_position["r"]) * 50), # deltaX + playerX
|
||||
"y": int(self.player_position["y"] + math.sin(self.player_position["r"]) * 50) # deltaY + playerY
|
||||
}
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(255,0,0,255), (self.player_position["x"], self.player_position["y"], ray["x"], ray["y"]))
|
||||
|
||||
|
||||
def draw2Dmap(self):
|
||||
# 2D map
|
||||
for i in range(len(MAP)):
|
||||
posX = i % MAP_SIZE * MAP_SCALE
|
||||
posY = math.floor(i / MAP_SIZE) * MAP_SCALE
|
||||
color = 0
|
||||
if MAP[i] == 1:
|
||||
color = 255
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(color,color,color,255), (posX, posY, MAP_SCALE - 1, MAP_SCALE - 1))
|
||||
|
||||
def drawRays(self):
|
||||
# Casts rays for raycasting
|
||||
playerAngle = self.player_position["r"]
|
||||
|
||||
# Cast one ray for every window pixel, from -0,5 rads to +0,5 rads (about 60° viewing angle)
|
||||
for i in range(RAYCAST_WIN_WIDTH):
|
||||
rayAngle = playerAngle + (i/RAYCAST_WIN_WIDTH) - 0.5
|
||||
if rayAngle < 0:
|
||||
rayAngle = math.pi * 2 + rayAngle
|
||||
if rayAngle > math.pi * 2:
|
||||
rayAngle = rayAngle - math.pi * 2
|
||||
|
||||
# Check horizontal lines
|
||||
dof = 0 # Depth of field
|
||||
if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking left or right (ray will never intersect parallel lines)
|
||||
rayY = self.player_position["y"]
|
||||
rayX = self.player_position["x"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi:
|
||||
# Looking up
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = -MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
else:
|
||||
# Looking down
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
# Save horyzontal probe rays for later comparison with vertical
|
||||
horizRayX = rayX
|
||||
horizRayY = rayY
|
||||
|
||||
# Check vertical lines
|
||||
dof = 0 # Depth of field
|
||||
nTan = -math.tan(rayAngle)
|
||||
xOffset = 0
|
||||
yOffset = 0
|
||||
if rayAngle == math.pi * 0.5 or rayAngle == math.pi * 1.5:
|
||||
#if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking up or down (ray will never intersect vertical lines)
|
||||
rayX = self.player_position["x"]
|
||||
rayY = self.player_position["y"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi * 0.5 and rayAngle < math.pi * 1.5:
|
||||
# Looking left
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = -MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
else:
|
||||
# Looking right
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
horizDist = self.dist(self.player_position["x"], self.player_position["y"], horizRayX, horizRayY)
|
||||
vertDist = self.dist(self.player_position["x"], self.player_position["y"], rayX, rayY)
|
||||
shortestDist = vertDist
|
||||
if vertDist > horizDist:
|
||||
rayX = horizRayX
|
||||
rayY = horizRayY
|
||||
shortestDist = horizDist
|
||||
|
||||
# Draw rays in 2D view
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(0,0,255,255), (self.player_position["x"], self.player_position["y"], rayX, rayY))
|
||||
|
||||
|
||||
# ------ Draw 3D view ------
|
||||
|
||||
# Calculate line height based on distance
|
||||
lineHeight = MAP_SCALE * RAYCAST_WIN_HEIGHT / shortestDist
|
||||
if lineHeight > RAYCAST_WIN_HEIGHT:
|
||||
lineHeight = RAYCAST_WIN_HEIGHT
|
||||
# Center line vertically in window
|
||||
lineOffset = RAYCAST_WIN_HEIGHT / 2 - lineHeight / 2
|
||||
|
||||
# Simulate lighting based on wall incidence
|
||||
color = sdl2.ext.Color(255,255,255,255)
|
||||
if vertDist > horizDist:
|
||||
color = sdl2.ext.Color(200,200,200,255)
|
||||
|
||||
# Draw line
|
||||
sdl2.ext.draw.line(self.raycastSurface, color, (i, int(lineOffset), i, int(lineOffset + lineHeight)))
|
||||
|
||||
def dist(self, ax, ay, bx, by):
|
||||
return math.sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
main = Main()
|
||||
main.run()
|
||||
except KeyboardInterrupt:
|
||||
exit(0)
|
BIN
v2/assets/texture_wall.png
Normal file
After Width: | Height: | Size: 24 KiB |
410
v2/raycaster.py
Executable file
@ -0,0 +1,410 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# RAYCASTER
|
||||
# Inspired by https://www.youtube.com/watch?v=gYRrGTC7GtA
|
||||
#
|
||||
# pip install pysdl2 pysdl2-dll pypng
|
||||
|
||||
import sys
|
||||
import sdl2.ext
|
||||
import math
|
||||
import time
|
||||
import ctypes
|
||||
import png
|
||||
|
||||
# Map cfg
|
||||
MAP_HIDDEN = True
|
||||
MAP_SCALE = 24
|
||||
MAP_SIZE = 17
|
||||
MAP_WIN_WIDTH = MAP_SIZE * MAP_SCALE
|
||||
MAP_WIN_HEIGHT = MAP_SIZE * MAP_SCALE
|
||||
|
||||
# Textures cfg
|
||||
TEXTURES = [
|
||||
"assets/texture_wall.png",
|
||||
"assets/texture_wall.png",
|
||||
"assets/texture_wall.png"
|
||||
]
|
||||
TEXTURE_SIZE = 64
|
||||
|
||||
# Raycast cfg
|
||||
RAYCAST_WIN_WIDTH = 1000
|
||||
RAYCAST_WIN_HEIGHT = 600
|
||||
RAYCAST_RESOLUTION_SCALING = 4
|
||||
RAYCAST_RENDER_WIDTH = int(RAYCAST_WIN_WIDTH / RAYCAST_RESOLUTION_SCALING)
|
||||
RAYCAST_RENDER_HEIGHT = int(RAYCAST_WIN_HEIGHT / RAYCAST_RESOLUTION_SCALING)
|
||||
DOF = 2*MAP_SIZE # Depth Of Field
|
||||
CEILING_COLOR = sdl2.ext.Color(0,128,255,255)
|
||||
FLOOR_COLOR = sdl2.ext.Color(0,128,0,255)
|
||||
|
||||
# Player cfg
|
||||
PLAYER_SPEED = 8
|
||||
PLAYER_ROTATION_SPEED = 0.1
|
||||
PLAYER_SPAWN_POSITION = {"x": int(MAP_SCALE * 2), "y": int(MAP_SCALE * 5), "r": 0} # r is rotation in radiants
|
||||
|
||||
# Dungeon data
|
||||
MAP = [
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
]
|
||||
|
||||
class Main:
|
||||
|
||||
def __init__(self):
|
||||
# Check valid map
|
||||
if len(MAP) != MAP_SIZE * MAP_SIZE:
|
||||
raise ValueError("Map size is {}, but should be a power of {}".format(len(MAP), MAP_SIZE))
|
||||
|
||||
# Load textures
|
||||
self.textures = []
|
||||
for texFile in TEXTURES:
|
||||
self.textures.append(self.loadTexture(texFile))
|
||||
|
||||
# Graphics
|
||||
sdl2.ext.init()
|
||||
if not MAP_HIDDEN:
|
||||
self.mapWindow = sdl2.ext.Window("2D Map", size=(MAP_WIN_WIDTH, MAP_WIN_HEIGHT))
|
||||
self.mapWindow.show()
|
||||
self.mapSurface = self.mapWindow.get_surface()
|
||||
|
||||
self.raycastWindow = sdl2.ext.Window("3D View", size=(RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT))
|
||||
self.raycastWindow.show()
|
||||
self.raycastSurface = self.raycastWindow.get_surface()
|
||||
self.raycast_u32_pixels = ctypes.cast(self.raycastSurface.pixels, ctypes.POINTER(ctypes.c_uint32)) # Raw SDL surface pixel array
|
||||
|
||||
# Player
|
||||
self.player_position = PLAYER_SPAWN_POSITION
|
||||
|
||||
return
|
||||
|
||||
def run(self):
|
||||
lastFpsCalcTime = 0
|
||||
frames = 0
|
||||
|
||||
running = True
|
||||
while running:
|
||||
events = sdl2.ext.get_events()
|
||||
for event in events:
|
||||
if event.type == sdl2.SDL_QUIT or (event.type == sdl2.SDL_KEYDOWN and event.key.keysym.sym == sdl2.SDLK_ESCAPE):
|
||||
running = False
|
||||
break
|
||||
|
||||
keystate = sdl2.SDL_GetKeyboardState(None)
|
||||
# Rotate player
|
||||
if keystate[sdl2.SDL_SCANCODE_LEFT]:
|
||||
self.player_position["r"] = self.player_position["r"] - PLAYER_ROTATION_SPEED
|
||||
elif keystate[sdl2.SDL_SCANCODE_RIGHT]:
|
||||
self.player_position["r"] = self.player_position["r"] + PLAYER_ROTATION_SPEED
|
||||
|
||||
# Compute deltax and deltay based on player direction
|
||||
player_delta_x = math.cos(self.player_position["r"]) * PLAYER_SPEED
|
||||
player_delta_y = math.sin(self.player_position["r"]) * PLAYER_SPEED
|
||||
|
||||
# Move player based on its direction
|
||||
if keystate[sdl2.SDL_SCANCODE_UP]:
|
||||
self.movePlayerRelative(player_delta_x, player_delta_y)
|
||||
elif keystate[sdl2.SDL_SCANCODE_DOWN]:
|
||||
self.movePlayerRelative(-player_delta_x, -player_delta_y)
|
||||
|
||||
# Limit position into dungeon bounds
|
||||
if self.player_position["x"] < 0:
|
||||
self.player_position["x"] = 0
|
||||
if self.player_position["x"] > MAP_WIN_WIDTH:
|
||||
self.player_position["x"] = MAP_WIN_WIDTH
|
||||
if self.player_position["y"] < 0:
|
||||
self.player_position["y"] = 0
|
||||
if self.player_position["y"] > MAP_WIN_HEIGHT:
|
||||
self.player_position["y"] = MAP_WIN_HEIGHT
|
||||
if self.player_position["r"] > 2*math.pi:
|
||||
self.player_position["r"] = 0
|
||||
if self.player_position["r"] < 0:
|
||||
self.player_position["r"] = 2*math.pi
|
||||
|
||||
self.draw()
|
||||
if not MAP_HIDDEN:
|
||||
self.mapWindow.refresh()
|
||||
self.raycastWindow.refresh()
|
||||
|
||||
# Calculate FPS
|
||||
frames = frames + 1
|
||||
if time.time() - lastFpsCalcTime > 1:
|
||||
fps = frames/(time.time() - lastFpsCalcTime)
|
||||
print(int(fps))
|
||||
frames = 0
|
||||
lastFpsCalcTime = time.time()
|
||||
|
||||
return 0
|
||||
|
||||
def movePlayerRelative(self, player_delta_x, player_delta_y):
|
||||
# Prevent player from going into walls (X axis)
|
||||
newPlayerX = int(self.player_position["x"] + player_delta_x)
|
||||
mapX = int(newPlayerX / MAP_SCALE)
|
||||
mapY = int(self.player_position["y"] / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
||||
# Move player (X)
|
||||
self.player_position["x"] = newPlayerX
|
||||
|
||||
# Prevent player from going into walls (Y axis)
|
||||
newPlayerY = int(self.player_position["y"] + player_delta_y)
|
||||
mapX = int(self.player_position["x"] / MAP_SCALE)
|
||||
mapY = int(newPlayerY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
||||
# Move player (Y)
|
||||
self.player_position["y"] = newPlayerY
|
||||
|
||||
def draw(self):
|
||||
if not MAP_HIDDEN:
|
||||
self.draw2Dmap()
|
||||
self.drawPlayer()
|
||||
self.drawRays()
|
||||
|
||||
def drawPlayer(self):
|
||||
# Player in 2D map
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,255,0,255), (self.player_position["x"] - 2, self.player_position["y"] - 2, 4, 4))
|
||||
# Player line of sight in 2D map
|
||||
ray = {
|
||||
"x": int(self.player_position["x"] + math.cos(self.player_position["r"]) * 50), # deltaX + playerX
|
||||
"y": int(self.player_position["y"] + math.sin(self.player_position["r"]) * 50) # deltaY + playerY
|
||||
}
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(255,0,0,255), (self.player_position["x"], self.player_position["y"], ray["x"], ray["y"]))
|
||||
|
||||
|
||||
def draw2Dmap(self):
|
||||
# 2D map
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,0,0,255)) # Clears map screen
|
||||
for i in range(len(MAP)):
|
||||
posX = i % MAP_SIZE * MAP_SCALE
|
||||
posY = math.floor(i / MAP_SIZE) * MAP_SCALE
|
||||
color = 0
|
||||
if MAP[i] > 0:
|
||||
color = 255
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(color,color,color,255), (posX, posY, MAP_SCALE - 1, MAP_SCALE - 1))
|
||||
|
||||
def drawRays(self):
|
||||
sdl2.ext.draw.fill(self.raycastSurface, CEILING_COLOR, (0, 0, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws ceiling)
|
||||
sdl2.ext.draw.fill(self.raycastSurface, FLOOR_COLOR, (0, RAYCAST_WIN_HEIGHT/2, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws floor)
|
||||
|
||||
# Casts rays for raycasting
|
||||
playerAngle = self.player_position["r"]
|
||||
|
||||
# Cast one ray for every window pixel, from -0,5 rads to +0,5 rads (about 60° viewing angle)
|
||||
for i in range(RAYCAST_RENDER_WIDTH):
|
||||
rayAngle = playerAngle + (i/RAYCAST_RENDER_WIDTH) - 0.5
|
||||
if rayAngle < 0:
|
||||
rayAngle = math.pi * 2 + rayAngle
|
||||
if rayAngle > math.pi * 2:
|
||||
rayAngle = rayAngle - math.pi * 2
|
||||
|
||||
# Which map wall tiles have been hit by rayX and rayY
|
||||
mapBlockHitX = 0
|
||||
mapBlockHitY = 0
|
||||
|
||||
# Check horizontal lines
|
||||
dof = 0 # Depth of field
|
||||
if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking left or right (ray will never intersect parallel lines)
|
||||
rayY = self.player_position["y"]
|
||||
rayX = self.player_position["x"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi:
|
||||
# Looking up
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = -MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
else:
|
||||
# Looking down
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
mapBlockHitY = MAP[mapArrayPosition] # Save which map wall tile we reached
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
# Save horyzontal probe rays for later comparison with vertical
|
||||
horizRayX = rayX
|
||||
horizRayY = rayY
|
||||
|
||||
# Check vertical lines
|
||||
dof = 0 # Depth of field
|
||||
nTan = -math.tan(rayAngle)
|
||||
xOffset = 0
|
||||
yOffset = 0
|
||||
if rayAngle == math.pi * 0.5 or rayAngle == math.pi * 1.5:
|
||||
#if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking up or down (ray will never intersect vertical lines)
|
||||
rayX = self.player_position["x"]
|
||||
rayY = self.player_position["y"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi * 0.5 and rayAngle < math.pi * 1.5:
|
||||
# Looking left
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = -MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
else:
|
||||
# Looking right
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
mapBlockHitX = MAP[mapArrayPosition] # Save which map wall tile we reached
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
horizDist = self.dist(self.player_position["x"], self.player_position["y"], horizRayX, horizRayY)
|
||||
vertDist = self.dist(self.player_position["x"], self.player_position["y"], rayX, rayY)
|
||||
shortestDist = vertDist
|
||||
if vertDist > horizDist:
|
||||
rayX = horizRayX
|
||||
rayY = horizRayY
|
||||
shortestDist = horizDist
|
||||
|
||||
if not MAP_HIDDEN:
|
||||
# Draw rays in 2D view
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(0,0,255,255), (self.player_position["x"], self.player_position["y"], rayX, rayY))
|
||||
|
||||
|
||||
# ------ Draw 3D view ------
|
||||
|
||||
# Calculate line height based on distance
|
||||
lineHeight = MAP_SCALE * RAYCAST_RENDER_HEIGHT / shortestDist
|
||||
# Center line vertically in window
|
||||
lineOffset = RAYCAST_RENDER_HEIGHT / 2 - lineHeight / 2
|
||||
|
||||
# Draw pixels vertically from top to bottom to obtain a line
|
||||
textureSegmentEnd = 0
|
||||
for textureColumnPixel in range(0, TEXTURE_SIZE):
|
||||
# Calc texture segment length on screen
|
||||
textureSegmentLength = lineHeight / TEXTURE_SIZE
|
||||
if textureSegmentEnd == 0:
|
||||
# First iteration: calculate segment start
|
||||
textureSegmentStart = lineOffset + textureColumnPixel * textureSegmentLength
|
||||
else:
|
||||
# Next iterations: use the previous segment end (avoids rounding errors)
|
||||
textureSegmentStart = textureSegmentEnd
|
||||
textureSegmentEnd = textureSegmentStart + textureSegmentLength
|
||||
# Obtain texture value in the pixel representing the current segment and calculate shading
|
||||
if vertDist > horizDist:
|
||||
texIndex = mapBlockHitY - 1 # The texture covering the selected map tile (0 is no texture, 1 is texture at self.textures[0] etc)
|
||||
texColumn = int(rayX / (MAP_SCALE / TEXTURE_SIZE) % TEXTURE_SIZE)
|
||||
shading = True
|
||||
else:
|
||||
texIndex = mapBlockHitX - 1 # The texture covering the selected map tile
|
||||
texColumn = int(rayY / (MAP_SCALE / TEXTURE_SIZE) % TEXTURE_SIZE)
|
||||
shading = False
|
||||
|
||||
# Obtain texture pixel color
|
||||
color = self.textures[texIndex][texColumn + textureColumnPixel * TEXTURE_SIZE]
|
||||
# Calculate color resulting from texture pixel value + shading
|
||||
if shading:
|
||||
color = self.shade(color)
|
||||
|
||||
# Clipping
|
||||
lineEnd = textureSegmentEnd
|
||||
if lineEnd > RAYCAST_RENDER_HEIGHT:
|
||||
lineEnd = RAYCAST_RENDER_HEIGHT
|
||||
lineStart = textureSegmentStart
|
||||
if lineStart < 0:
|
||||
lineStart = 0
|
||||
if lineEnd < lineStart:
|
||||
continue
|
||||
|
||||
# Upscaling
|
||||
lineStart = lineStart * RAYCAST_RESOLUTION_SCALING
|
||||
lineEnd = lineEnd * RAYCAST_RESOLUTION_SCALING
|
||||
|
||||
# Draw segment
|
||||
for repeat in range(1, RAYCAST_RESOLUTION_SCALING + 1):
|
||||
x = i * RAYCAST_RESOLUTION_SCALING + repeat
|
||||
self.drawVline(self.raycastSurface, color, x, int(lineStart), int(lineEnd))
|
||||
|
||||
def drawVline(self, surface, color, x, startY, endY):
|
||||
if x < 0 or x > RAYCAST_WIN_WIDTH or startY < 0 or endY > RAYCAST_WIN_HEIGHT or endY < startY:
|
||||
print("Trying to write outside bounds: vertical line with x {} from y {} to y {}".format(x, startY, endY))
|
||||
return
|
||||
|
||||
startIdx = startY * RAYCAST_WIN_WIDTH + x
|
||||
for idx in range(startIdx, endY * RAYCAST_WIN_WIDTH + x, RAYCAST_WIN_WIDTH):
|
||||
self.raycast_u32_pixels[idx] = color
|
||||
|
||||
def shade(self, color):
|
||||
# Obtain channels
|
||||
b = color & 0b000000000000000011111111
|
||||
g = color >> 8 & 0b000000000000000011111111
|
||||
r = color >> 16 & 0b000000000000000011111111
|
||||
# Dim channels (and limit to 255, because python doesn't have a fixed byte length)
|
||||
b = (b >> 1)
|
||||
g = (g >> 1)
|
||||
r = (r >> 1)
|
||||
# Compose color
|
||||
return b + (g << 8) + (r << 16)
|
||||
|
||||
def dist(self, ax, ay, bx, by):
|
||||
return math.sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay))
|
||||
|
||||
def loadTexture(self, pngFilePath):
|
||||
# Loads a texture from png file and converts to sdl2-friendly format
|
||||
reader = png.Reader(filename=pngFilePath)
|
||||
w, h, pixels, metadata = reader.read_flat()
|
||||
if metadata['alpha']:
|
||||
raise ValueError("Textures with alpha channel are not supported")
|
||||
if w != TEXTURE_SIZE or h != TEXTURE_SIZE:
|
||||
raise ValueError("Texture {} is not {}x{}, but {}x{}".format(pngFilePath, TEXTURE_SIZE, TEXTURE_SIZE, w, h))
|
||||
# Convert to sdl2-friendly format
|
||||
converted = []
|
||||
for i in range(0, len(pixels), 3):
|
||||
# PNG is RGB, SDL surface is BGR
|
||||
converted.append(pixels[i+2] + (pixels[i+1] << 8) + (pixels[i] << 16)) # BGR
|
||||
return converted
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
main = Main()
|
||||
main.run()
|
||||
except KeyboardInterrupt:
|
||||
exit(0)
|
BIN
v3/assets/texture_temple.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
v3/assets/texture_wall_brick.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
v3/assets/texture_wall_brick_door_center.png
Normal file
After Width: | Height: | Size: 21 KiB |
BIN
v3/assets/texture_wall_brick_door_left.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
v3/assets/texture_wall_brick_door_right.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
v3/assets/texture_wall_brick_flag.png
Normal file
After Width: | Height: | Size: 23 KiB |
458
v3/raycaster.py
Executable file
@ -0,0 +1,458 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# RAYCASTER
|
||||
# Inspired by https://www.youtube.com/watch?v=gYRrGTC7GtA
|
||||
#
|
||||
# pip install pysdl2 pysdl2-dll pypng
|
||||
|
||||
import sys
|
||||
import sdl2.ext
|
||||
import math
|
||||
import time
|
||||
import ctypes
|
||||
import png
|
||||
|
||||
# Map cfg
|
||||
MAP_HIDDEN = True
|
||||
MAP_SCALE = 24
|
||||
MAP_SIZE = 32
|
||||
MAP_WIN_WIDTH = MAP_SIZE * MAP_SCALE
|
||||
MAP_WIN_HEIGHT = MAP_SIZE * MAP_SCALE
|
||||
MAP_DOOR_CELL_TYPE = 3
|
||||
|
||||
# Textures cfg
|
||||
# Index is shifted by 1 relative to map, because 0 is no wall
|
||||
TEXTURES = [
|
||||
"assets/texture_wall_brick.png", # = map index 1
|
||||
"assets/texture_wall_brick_door_left.png", # = map index 2
|
||||
"assets/texture_wall_brick_door_center.png", # = map index 3
|
||||
"assets/texture_wall_brick_door_right.png", # = map index 4
|
||||
"assets/texture_wall_brick_flag.png", # = map index 5
|
||||
"assets/texture_temple.png", # = map index 6
|
||||
]
|
||||
TEXTURE_SIZE = 64
|
||||
|
||||
# Raycast cfg
|
||||
RAYCAST_WIN_WIDTH = 1024
|
||||
RAYCAST_WIN_HEIGHT = 1024
|
||||
RAYCAST_RENDER_WIDTH = int(RAYCAST_WIN_WIDTH / 4)
|
||||
RAYCAST_RENDER_HEIGHT = int(RAYCAST_WIN_HEIGHT / 4)
|
||||
DOF = 2*MAP_SIZE # Depth Of Field
|
||||
CEILING_COLOR = sdl2.ext.Color(0,128,255,255)
|
||||
FLOOR_COLOR = sdl2.ext.Color(64,64,64,255)
|
||||
|
||||
# Player cfg
|
||||
PLAYER_SPEED = 8
|
||||
PLAYER_ROTATION_SPEED = 0.1
|
||||
PLAYER_SPAWN_POSITION = {"x": 1.5, "y": 1.5, "r": 1.7} # r is rotation in radiants
|
||||
|
||||
# Dungeon data
|
||||
MAP = [
|
||||
1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 6, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 2, 1, 1, 5, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 4, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
]
|
||||
|
||||
class Main:
|
||||
|
||||
def __init__(self):
|
||||
# Print instructions
|
||||
print('RAYCASTER by penguin86\n\nMovement: up, down, left, right\nOpen door: space\n\nFPS:')
|
||||
|
||||
# Check valid map
|
||||
if len(MAP) != MAP_SIZE * MAP_SIZE:
|
||||
raise ValueError("Map size is {}, but should be a power of {}".format(len(MAP), MAP_SIZE))
|
||||
|
||||
# Load textures
|
||||
self.textures = []
|
||||
for texFile in TEXTURES:
|
||||
self.textures.append(self.loadTexture(texFile))
|
||||
|
||||
# Graphics
|
||||
sdl2.ext.init()
|
||||
if not MAP_HIDDEN:
|
||||
self.mapWindow = sdl2.ext.Window("2D Map", size=(MAP_WIN_WIDTH, MAP_WIN_HEIGHT))
|
||||
self.mapWindow.show()
|
||||
self.mapSurface = self.mapWindow.get_surface()
|
||||
|
||||
self.raycastWindow = sdl2.ext.Window("3D View", size=(RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT))
|
||||
self.raycastWindow.show()
|
||||
self.raycastSurface = self.raycastWindow.get_surface()
|
||||
self.raycast_u32_pixels = ctypes.cast(self.raycastSurface.pixels, ctypes.POINTER(ctypes.c_uint32)) # Raw SDL surface pixel array
|
||||
|
||||
# Player
|
||||
self.player_position = {"x": int(MAP_SCALE * PLAYER_SPAWN_POSITION["x"]), "y": int(MAP_SCALE * PLAYER_SPAWN_POSITION["y"]), "r": PLAYER_SPAWN_POSITION["r"]} # r is rotation in radiants
|
||||
|
||||
return
|
||||
|
||||
def run(self):
|
||||
lastFpsCalcTime = 0
|
||||
frames = 0
|
||||
|
||||
running = True
|
||||
while running:
|
||||
events = sdl2.ext.get_events()
|
||||
for event in events:
|
||||
if event.type == sdl2.SDL_QUIT or (event.type == sdl2.SDL_KEYDOWN and event.key.keysym.sym == sdl2.SDLK_ESCAPE):
|
||||
running = False
|
||||
break
|
||||
|
||||
keystate = sdl2.SDL_GetKeyboardState(None)
|
||||
# Rotate player
|
||||
if keystate[sdl2.SDL_SCANCODE_LEFT]:
|
||||
self.player_position["r"] = self.player_position["r"] - PLAYER_ROTATION_SPEED
|
||||
elif keystate[sdl2.SDL_SCANCODE_RIGHT]:
|
||||
self.player_position["r"] = self.player_position["r"] + PLAYER_ROTATION_SPEED
|
||||
|
||||
# Compute deltax and deltay based on player direction
|
||||
player_delta_x = (math.cos(self.player_position["r"]) * PLAYER_SPEED) + 1 # "+ 1": Adjust for rounding errors
|
||||
player_delta_y = math.sin(self.player_position["r"]) * PLAYER_SPEED
|
||||
|
||||
# Move player based on its direction
|
||||
if keystate[sdl2.SDL_SCANCODE_UP]:
|
||||
self.movePlayerRelative(player_delta_x, player_delta_y)
|
||||
elif keystate[sdl2.SDL_SCANCODE_DOWN]:
|
||||
self.movePlayerRelative(-player_delta_x, -player_delta_y)
|
||||
|
||||
# Limit position into dungeon bounds
|
||||
if self.player_position["x"] < 0:
|
||||
self.player_position["x"] = 0
|
||||
if self.player_position["x"] > MAP_WIN_WIDTH:
|
||||
self.player_position["x"] = MAP_WIN_WIDTH
|
||||
if self.player_position["y"] < 0:
|
||||
self.player_position["y"] = 0
|
||||
if self.player_position["y"] > MAP_WIN_HEIGHT:
|
||||
self.player_position["y"] = MAP_WIN_HEIGHT
|
||||
if self.player_position["r"] > 2*math.pi:
|
||||
self.player_position["r"] = 0
|
||||
if self.player_position["r"] < 0:
|
||||
self.player_position["r"] = 2*math.pi
|
||||
|
||||
# Open doors
|
||||
if keystate[sdl2.SDL_SCANCODE_SPACE]:
|
||||
self.openDoor()
|
||||
|
||||
self.draw()
|
||||
if not MAP_HIDDEN:
|
||||
self.mapWindow.refresh()
|
||||
self.raycastWindow.refresh()
|
||||
|
||||
# Calculate FPS
|
||||
frames = frames + 1
|
||||
if time.time() - lastFpsCalcTime > 1:
|
||||
fps = frames/(time.time() - lastFpsCalcTime)
|
||||
print(int(fps))
|
||||
frames = 0
|
||||
lastFpsCalcTime = time.time()
|
||||
|
||||
return 0
|
||||
|
||||
def movePlayerRelative(self, player_delta_x, player_delta_y):
|
||||
# Prevent player from going into walls (X axis)
|
||||
newPlayerX = int(self.player_position["x"] + player_delta_x)
|
||||
mapX = int(newPlayerX / MAP_SCALE)
|
||||
mapY = int(self.player_position["y"] / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
||||
# Move player (X)
|
||||
self.player_position["x"] = newPlayerX
|
||||
|
||||
# Prevent player from going into walls (Y axis)
|
||||
newPlayerY = int(self.player_position["y"] + player_delta_y)
|
||||
mapX = int(self.player_position["x"] / MAP_SCALE)
|
||||
mapY = int(newPlayerY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
||||
# Move player (Y)
|
||||
self.player_position["y"] = newPlayerY
|
||||
|
||||
def draw(self):
|
||||
if not MAP_HIDDEN:
|
||||
self.draw2Dmap()
|
||||
self.drawPlayer()
|
||||
self.drawRays()
|
||||
|
||||
def drawPlayer(self):
|
||||
# Player in 2D map
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,255,0,255), (self.player_position["x"] - 2, self.player_position["y"] - 2, 4, 4))
|
||||
# Player line of sight in 2D map
|
||||
ray = {
|
||||
"x": int(self.player_position["x"] + math.cos(self.player_position["r"]) * 50), # deltaX + playerX
|
||||
"y": int(self.player_position["y"] + math.sin(self.player_position["r"]) * 50) # deltaY + playerY
|
||||
}
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(255,0,0,255), (self.player_position["x"], self.player_position["y"], ray["x"], ray["y"]))
|
||||
|
||||
|
||||
def draw2Dmap(self):
|
||||
# 2D map
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,0,0,255)) # Clears map screen
|
||||
for i in range(len(MAP)):
|
||||
posX = i % MAP_SIZE * MAP_SCALE
|
||||
posY = math.floor(i / MAP_SIZE) * MAP_SCALE
|
||||
color = 0
|
||||
if MAP[i] > 0:
|
||||
color = 255
|
||||
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(color,color,color,255), (posX, posY, MAP_SCALE - 1, MAP_SCALE - 1))
|
||||
|
||||
def drawRays(self):
|
||||
sdl2.ext.draw.fill(self.raycastSurface, CEILING_COLOR, (0, 0, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws ceiling)
|
||||
sdl2.ext.draw.fill(self.raycastSurface, FLOOR_COLOR, (0, RAYCAST_WIN_HEIGHT/2, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws floor)
|
||||
|
||||
# Casts rays for raycasting
|
||||
playerAngle = self.player_position["r"]
|
||||
|
||||
# Cast one ray for every window pixel, from -0,5 rads to +0,5 rads (about 60° viewing angle)
|
||||
for i in range(RAYCAST_RENDER_WIDTH):
|
||||
rayAngle = playerAngle + (i/RAYCAST_RENDER_WIDTH) - 0.5
|
||||
if rayAngle < 0:
|
||||
rayAngle = math.pi * 2 + rayAngle
|
||||
if rayAngle > math.pi * 2:
|
||||
rayAngle = rayAngle - math.pi * 2
|
||||
|
||||
# Which map wall tiles have been hit by rayX and rayY
|
||||
mapBlockHitX = 0
|
||||
mapBlockHitY = 0
|
||||
|
||||
# Check horizontal lines
|
||||
dof = 0 # Depth of field
|
||||
if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking left or right (ray will never intersect parallel lines)
|
||||
rayY = self.player_position["y"]
|
||||
rayX = self.player_position["x"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi:
|
||||
# Looking up
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = -MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
else:
|
||||
# Looking down
|
||||
aTan = -1/math.tan(rayAngle)
|
||||
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
||||
yOffset = MAP_SCALE
|
||||
xOffset = -yOffset * aTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
mapBlockHitY = MAP[mapArrayPosition] # Save which map wall tile we reached
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
# Save horyzontal probe rays for later comparison with vertical
|
||||
horizRayX = rayX
|
||||
horizRayY = rayY
|
||||
|
||||
# Check vertical lines
|
||||
dof = 0 # Depth of field
|
||||
nTan = -math.tan(rayAngle)
|
||||
xOffset = 0
|
||||
yOffset = 0
|
||||
if rayAngle == math.pi * 0.5 or rayAngle == math.pi * 1.5:
|
||||
#if rayAngle == 0 or rayAngle == math.pi:
|
||||
# Looking up or down (ray will never intersect vertical lines)
|
||||
rayX = self.player_position["x"]
|
||||
rayY = self.player_position["y"] + DOF * MAP_SCALE
|
||||
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
||||
elif rayAngle > math.pi * 0.5 and rayAngle < math.pi * 1.5:
|
||||
# Looking left
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = -MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
else:
|
||||
# Looking right
|
||||
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
||||
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
||||
xOffset = MAP_SCALE
|
||||
yOffset = -xOffset * nTan
|
||||
|
||||
# Check if we reached a wall
|
||||
while dof < DOF:
|
||||
mapX = int(rayX / MAP_SCALE)
|
||||
mapY = int(rayY / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] != 0:
|
||||
dof = DOF # Hit the wall: we are done, no need to do other checks
|
||||
mapBlockHitX = MAP[mapArrayPosition] # Save which map wall tile we reached
|
||||
else:
|
||||
# Didn't hit the wall: check successive horizontal line
|
||||
rayX = rayX + xOffset
|
||||
rayY = rayY + yOffset
|
||||
dof = dof + 1
|
||||
|
||||
horizDist = self.dist(self.player_position["x"], self.player_position["y"], horizRayX, horizRayY)
|
||||
vertDist = self.dist(self.player_position["x"], self.player_position["y"], rayX, rayY)
|
||||
shortestDist = vertDist
|
||||
if vertDist > horizDist:
|
||||
rayX = horizRayX
|
||||
rayY = horizRayY
|
||||
shortestDist = horizDist
|
||||
|
||||
if not MAP_HIDDEN:
|
||||
# Draw rays in 2D view
|
||||
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(0,0,255,255), (self.player_position["x"], self.player_position["y"], rayX, rayY))
|
||||
|
||||
|
||||
# ------ Draw 3D view ------
|
||||
|
||||
# Calculate line height based on distance
|
||||
lineHeight = MAP_SCALE * RAYCAST_RENDER_HEIGHT / shortestDist
|
||||
# Center line vertically in window
|
||||
lineOffset = RAYCAST_RENDER_HEIGHT / 2 - lineHeight / 2
|
||||
|
||||
# Draw pixels vertically from top to bottom to obtain a line
|
||||
textureSegmentEnd = 0
|
||||
for textureColumnPixel in range(0, TEXTURE_SIZE):
|
||||
# Calc texture segment length on screen
|
||||
textureSegmentLength = lineHeight / TEXTURE_SIZE
|
||||
if textureSegmentEnd == 0:
|
||||
# First iteration: calculate segment start
|
||||
textureSegmentStart = lineOffset + textureColumnPixel * textureSegmentLength
|
||||
else:
|
||||
# Next iterations: use the previous segment end (avoids rounding errors)
|
||||
textureSegmentStart = textureSegmentEnd
|
||||
textureSegmentEnd = textureSegmentStart + textureSegmentLength
|
||||
# Obtain texture value in the pixel representing the current segment and calculate shading
|
||||
if vertDist > horizDist:
|
||||
texIndex = mapBlockHitY - 1 # The texture covering the selected map tile (0 is no texture, 1 is texture at self.textures[0] etc)
|
||||
texColumn = int(rayX / (MAP_SCALE / TEXTURE_SIZE) % TEXTURE_SIZE)
|
||||
shading = True
|
||||
else:
|
||||
texIndex = mapBlockHitX - 1 # The texture covering the selected map tile
|
||||
texColumn = int(rayY / (MAP_SCALE / TEXTURE_SIZE) % TEXTURE_SIZE)
|
||||
shading = False
|
||||
|
||||
# Obtain texture pixel color
|
||||
color = self.textures[texIndex][texColumn + textureColumnPixel * TEXTURE_SIZE]
|
||||
# Calculate color resulting from texture pixel value + shading
|
||||
if shading:
|
||||
color = self.shade(color)
|
||||
|
||||
# Clipping
|
||||
lineEnd = textureSegmentEnd
|
||||
if lineEnd > RAYCAST_RENDER_HEIGHT:
|
||||
lineEnd = RAYCAST_RENDER_HEIGHT
|
||||
lineStart = textureSegmentStart
|
||||
if lineStart < 0:
|
||||
lineStart = 0
|
||||
if lineEnd < lineStart:
|
||||
continue
|
||||
|
||||
# Draw segment (all is scaled x4)
|
||||
x = i * 4
|
||||
for idx in range(int(lineStart * 4) * RAYCAST_WIN_WIDTH + x, int(lineEnd * 4) * RAYCAST_WIN_WIDTH + x, RAYCAST_WIN_WIDTH):
|
||||
self.raycast_u32_pixels[idx] = color
|
||||
self.raycast_u32_pixels[idx + 1] = color
|
||||
self.raycast_u32_pixels[idx + 2] = color
|
||||
self.raycast_u32_pixels[idx + 3] = color
|
||||
|
||||
def shade(self, color):
|
||||
# Obtain channels
|
||||
b = color & 0b000000000000000011111111
|
||||
g = color >> 8 & 0b000000000000000011111111
|
||||
r = color >> 16 & 0b000000000000000011111111
|
||||
# Dim channels (and limit to 255, because python doesn't have a fixed byte length)
|
||||
b = (b >> 1)
|
||||
g = (g >> 1)
|
||||
r = (r >> 1)
|
||||
# Compose color
|
||||
return b + (g << 8) + (r << 16)
|
||||
|
||||
def dist(self, ax, ay, bx, by):
|
||||
return math.sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay))
|
||||
|
||||
def loadTexture(self, pngFilePath):
|
||||
# Loads a texture from png file and converts to sdl2-friendly format
|
||||
reader = png.Reader(filename=pngFilePath)
|
||||
w, h, pixels, metadata = reader.read_flat()
|
||||
if w != TEXTURE_SIZE or h != TEXTURE_SIZE:
|
||||
raise ValueError("Texture {} is not {}x{}, but {}x{}".format(pngFilePath, TEXTURE_SIZE, TEXTURE_SIZE, w, h))
|
||||
color_length = 3 # RGB
|
||||
if metadata['alpha']:
|
||||
color_length = 4 # RGBA (but alpha is ignored)
|
||||
# Convert to sdl2-friendly format
|
||||
converted = []
|
||||
for i in range(0, len(pixels), color_length):
|
||||
# PNG is RGB, SDL surface is BGR
|
||||
converted.append(pixels[i+2] + (pixels[i+1] << 8) + (pixels[i] << 16)) # BGR
|
||||
return converted
|
||||
|
||||
def openDoor(self):
|
||||
# Opens a door near the user
|
||||
# Works by modifying the map (removing the door)
|
||||
|
||||
# Find where is the user
|
||||
mapX = int(self.player_position["x"] / MAP_SCALE)
|
||||
mapY = int(self.player_position["y"] / MAP_SCALE)
|
||||
mapArrayPosition = mapY * MAP_SIZE + mapX
|
||||
|
||||
# Find in which direction the user is looking
|
||||
playerAngle = self.player_position["r"]
|
||||
lookingAtMapArrayPosition = 0
|
||||
if playerAngle > math.pi / 4 and playerAngle <= 3 * math.pi / 4:
|
||||
# Looking up
|
||||
lookingAtMapArrayPosition = mapArrayPosition - MAP_SIZE
|
||||
elif playerAngle > 3 * math.pi / 4 and playerAngle <= 5 * math.pi / 4:
|
||||
# Looking left
|
||||
lookingAtMapArrayPosition = mapArrayPosition - 1
|
||||
elif playerAngle > 5 * math.pi / 4 and playerAngle <= 7 * math.pi / 4:
|
||||
# Looking down
|
||||
lookingAtMapArrayPosition = mapArrayPosition + MAP_SIZE
|
||||
else:
|
||||
# Looking right
|
||||
lookingAtMapArrayPosition = mapArrayPosition + 1
|
||||
|
||||
if MAP[lookingAtMapArrayPosition] == MAP_DOOR_CELL_TYPE:
|
||||
# Player looking at a door: open it ("remove" it, leaving an empty space)
|
||||
MAP[lookingAtMapArrayPosition] = 0
|
||||
else:
|
||||
print("Player looking at cell #{} of type {}: nothing to do".format(lookingAtMapArrayPosition, MAP[lookingAtMapArrayPosition]))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
try:
|
||||
main = Main()
|
||||
main.run()
|
||||
except KeyboardInterrupt:
|
||||
exit(0)
|