#!/usr/bin/env python3 # RAYCASTER # Inspired by https://www.youtube.com/watch?v=gYRrGTC7GtA # # pip install pysdl2 pysdl2-dll import sys import sdl2.ext import math from time import time MAP_WIN_WIDTH = 640 MAP_WIN_HEIGHT = 640 RAYCAST_WIN_WIDTH = 900 RAYCAST_WIN_HEIGHT = 600 DUNGEON_WIDTH = MAP_WIN_WIDTH DUNGEON_HEIGHT = MAP_WIN_HEIGHT PLAYER_SPEED = 10 RAY_LENGTH = 100 MAP_SCALE = 80 DOF = 8 # Depth Of Field DEGREE_IN_RADIANTS = 0.01745329 MAP = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ] MAP_SIZE = 8 class Main: def __init__(self): # Check valid map if len(MAP) != MAP_SIZE * MAP_SIZE: raise ValueError("Map size is {}, but should be a power of {}", len(MAP), MAP_SIZE) # Graphics sdl2.ext.init() self.mapWindow = sdl2.ext.Window("2D Map", size=(MAP_WIN_WIDTH, MAP_WIN_HEIGHT)) self.mapWindow.show() self.mapSurface = self.mapWindow.get_surface() self.raycastWindow = sdl2.ext.Window("3D View", size=(RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT)) self.raycastWindow.show() self.raycastSurface = self.raycastWindow.get_surface() # Player self.player_position = {"x": int(DUNGEON_WIDTH/2), "y": int(DUNGEON_HEIGHT/2), "r": 0} # r is rotation in radiants return def run(self): running = True while running: events = sdl2.ext.get_events() for event in events: if event.type == sdl2.SDL_QUIT: running = False break if event.type == sdl2.SDL_KEYDOWN: # Rotate player if event.key.keysym.sym == sdl2.SDLK_LEFT: self.player_position["r"] = self.player_position["r"] + 10*DEGREE_IN_RADIANTS elif event.key.keysym.sym == sdl2.SDLK_RIGHT: self.player_position["r"] = self.player_position["r"] - 10*DEGREE_IN_RADIANTS # Compute deltax and deltay based on player direction player_delta_x = math.cos(self.player_position["r"]) * PLAYER_SPEED player_delta_y = math.sin(self.player_position["r"]) * PLAYER_SPEED # Move player based on its direction if event.key.keysym.sym == sdl2.SDLK_UP: self.player_position["y"] = int(self.player_position["y"] + player_delta_y) self.player_position["x"] = int(self.player_position["x"] + player_delta_x) elif event.key.keysym.sym == sdl2.SDLK_DOWN: self.player_position["y"] = int(self.player_position["y"] - player_delta_y) self.player_position["x"] = int(self.player_position["x"] - player_delta_x) # Limit position into dungeon bounds if self.player_position["x"] < 0: self.player_position["x"] = 0 if self.player_position["x"] > DUNGEON_WIDTH: self.player_position["x"] = DUNGEON_WIDTH if self.player_position["y"] < 0: self.player_position["y"] = 0 if self.player_position["y"] > DUNGEON_HEIGHT: self.player_position["y"] = DUNGEON_HEIGHT if self.player_position["r"] > 2*math.pi: self.player_position["r"] = 0 if self.player_position["r"] < 0: self.player_position["r"] = 2*math.pi sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,0,0,0)) # Clears screen sdl2.ext.draw.fill(self.raycastSurface, sdl2.ext.Color(0,0,0,0)) # Clears screen self.draw() self.mapWindow.refresh() self.raycastWindow.refresh() return 0 def draw(self): self.draw2Dmap() self.drawPlayer() self.drawRays() def drawPlayer(self): # Player in 2D map sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,255,0,255), (self.player_position["x"] - 2, self.player_position["y"] - 2, 4, 4)) # Player line of sight in 2D map ray = { "x": int(self.player_position["x"] + math.cos(self.player_position["r"]) * 50), # deltaX + playerX "y": int(self.player_position["y"] + math.sin(self.player_position["r"]) * 50) # deltaY + playerY } sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(255,0,0,255), (self.player_position["x"], self.player_position["y"], ray["x"], ray["y"])) def draw2Dmap(self): # 2D map for i in range(len(MAP)): posX = i % MAP_SIZE * MAP_SCALE posY = math.floor(i / MAP_SIZE) * MAP_SCALE color = 0 if MAP[i] == 1: color = 255 sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(color,color,color,255), (posX, posY, MAP_SCALE - 1, MAP_SCALE - 1)) def drawRays(self): # Casts rays for raycasting playerAngle = self.player_position["r"] # Cast 60 rays from -30° to +30° (60° viewing angle) for i in range(60): rayAngle = playerAngle + (i - 30)*DEGREE_IN_RADIANTS if rayAngle < 0: rayAngle = 2 * math.pi + rayAngle # Check horizontal lines dof = 0 # Depth of field if rayAngle == 0 or rayAngle == math.pi: # Looking left or right (ray will never intersect parallel lines) rayY = self.player_position["y"] rayX = self.player_position["x"] + DOF * MAP_SCALE dof = DOF # Set depth of field to maximum to avoid unneeded checks elif rayAngle > math.pi: # Looking up aTan = -1/math.tan(rayAngle) rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) - 0.00001 rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"] yOffset = -MAP_SCALE xOffset = -yOffset * aTan else: # Looking down aTan = -1/math.tan(rayAngle) rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"] yOffset = MAP_SCALE xOffset = -yOffset * aTan # Check if we reached a wall while dof < 8: mapX = int(rayX / MAP_SCALE) mapY = int(rayY / MAP_SCALE) mapArrayPosition = mapY * MAP_SIZE + mapX if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE and MAP[mapArrayPosition] != 0: dof = 8 # Hit the wall: we are done, no need to do other checks else: # Didn't hit the wall: check successive horizontal line rayX = rayX + xOffset rayY = rayY + yOffset dof = dof + 1 # Save horyzontal probe rays for later comparison with vertical horizRayX = rayX horizRayY = rayY # Check vertical lines dof = 0 # Depth of field nTan = -math.tan(rayAngle) xOffset = 0 yOffset = 0 if rayAngle == math.pi * 0.5 or rayAngle == math.pi * 1.5: #if rayAngle == 0 or rayAngle == math.pi: # Looking up or down (ray will never intersect vertical lines) rayX = self.player_position["x"] rayY = self.player_position["y"] + DOF * MAP_SCALE dof = DOF # Set depth of field to maximum to avoid unneeded checks elif rayAngle > math.pi * 0.5 and rayAngle < math.pi * 1.5: # Looking right rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) - 0.00001 rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"] xOffset = -MAP_SCALE yOffset = -xOffset * nTan else: # Looking left rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"] xOffset = MAP_SCALE yOffset = -xOffset * nTan # Check if we reached a wall while dof < 8: mapX = int(rayX / MAP_SCALE) mapY = int(rayY / MAP_SCALE) mapArrayPosition = mapY * MAP_SIZE + mapX if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] != 0: dof = 8 # Hit the wall: we are done, no need to do other checks else: # Didn't hit the wall: check successive horizontal line rayX = rayX + xOffset rayY = rayY + yOffset dof = dof + 1 horizDist = self.dist(self.player_position["x"], self.player_position["y"], horizRayX, horizRayY) vertDist = self.dist(self.player_position["x"], self.player_position["y"], rayX, rayY) shortestDist = vertDist if vertDist > horizDist: rayX = horizRayX rayY = horizRayY shortestDist = horizDist # Draw rays in 2D view sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(i*4,0,255,255), (self.player_position["x"], self.player_position["y"], rayX, rayY)) # ------ Draw 3D view ------ # Calculate line height based on distance lineHeight = MAP_SCALE * RAYCAST_WIN_HEIGHT / shortestDist if lineHeight > RAYCAST_WIN_HEIGHT: lineHeight = RAYCAST_WIN_HEIGHT # Center line vertically in window lineOffset = RAYCAST_WIN_HEIGHT / 2 - lineHeight / 2 # Simulate lighting based on wall incidence color = sdl2.ext.Color(255,255,255,255) if vertDist > horizDist: color = sdl2.ext.Color(200,200,200,255) # Draw line for x in range(i*15, i*15+15): sdl2.ext.draw.line(self.raycastSurface, color, (x, int(lineOffset), x, int(lineOffset + lineHeight))) def dist(self, ax, ay, bx, by): return math.sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay)) if __name__ == '__main__': try: main = Main() main.run() except KeyboardInterrupt: exit(0)