301 lines
10 KiB
Python
Executable File
301 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# RAYCASTER
|
|
# Inspired by https://www.youtube.com/watch?v=gYRrGTC7GtA
|
|
#
|
|
# pip install pysdl2 pysdl2-dll
|
|
|
|
import sys
|
|
import sdl2.ext
|
|
import math
|
|
import time
|
|
|
|
MAP_WIN_WIDTH = 640
|
|
MAP_WIN_HEIGHT = 640
|
|
RAYCAST_WIN_WIDTH = 800
|
|
RAYCAST_WIN_HEIGHT = 480
|
|
DUNGEON_WIDTH = MAP_WIN_WIDTH
|
|
DUNGEON_HEIGHT = MAP_WIN_HEIGHT
|
|
PLAYER_SPEED = 10
|
|
PLAYER_ROTATION_SPEED = 0.17
|
|
RAY_LENGTH = 100
|
|
MAP_SCALE = 40
|
|
COLLISION = True
|
|
|
|
MAP = [
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
]
|
|
MAP_SIZE = 16
|
|
DOF = 2*MAP_SIZE # Depth Of Field
|
|
|
|
class Main:
|
|
|
|
def __init__(self):
|
|
# Check valid map
|
|
if len(MAP) != MAP_SIZE * MAP_SIZE:
|
|
raise ValueError("Map size is {}, but should be a power of {}".format(len(MAP), MAP_SIZE))
|
|
|
|
# Graphics
|
|
sdl2.ext.init()
|
|
self.mapWindow = sdl2.ext.Window("2D Map", size=(MAP_WIN_WIDTH, MAP_WIN_HEIGHT))
|
|
self.mapWindow.show()
|
|
self.mapSurface = self.mapWindow.get_surface()
|
|
|
|
self.raycastWindow = sdl2.ext.Window("3D View", size=(RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT))
|
|
self.raycastWindow.show()
|
|
self.raycastSurface = self.raycastWindow.get_surface()
|
|
|
|
# Player
|
|
self.player_position = {"x": int(DUNGEON_WIDTH/2), "y": int(DUNGEON_HEIGHT/2), "r": 0} # r is rotation in radiants
|
|
|
|
return
|
|
|
|
def run(self):
|
|
lastFpsCalcTime = 0
|
|
frames = 0
|
|
|
|
running = True
|
|
while running:
|
|
events = sdl2.ext.get_events()
|
|
for event in events:
|
|
if event.type == sdl2.SDL_QUIT:
|
|
running = False
|
|
break
|
|
if event.type == sdl2.SDL_KEYDOWN:
|
|
# Rotate player
|
|
if event.key.keysym.sym == sdl2.SDLK_LEFT:
|
|
self.player_position["r"] = self.player_position["r"] - PLAYER_ROTATION_SPEED
|
|
elif event.key.keysym.sym == sdl2.SDLK_RIGHT:
|
|
self.player_position["r"] = self.player_position["r"] + PLAYER_ROTATION_SPEED
|
|
|
|
# Compute deltax and deltay based on player direction
|
|
player_delta_x = math.cos(self.player_position["r"]) * PLAYER_SPEED
|
|
player_delta_y = math.sin(self.player_position["r"]) * PLAYER_SPEED
|
|
|
|
# Move player based on its direction
|
|
if event.key.keysym.sym == sdl2.SDLK_UP:
|
|
self.movePlayerRelative(player_delta_x, player_delta_y)
|
|
elif event.key.keysym.sym == sdl2.SDLK_DOWN:
|
|
self.movePlayerRelative(-player_delta_x, -player_delta_y)
|
|
|
|
# Limit position into dungeon bounds
|
|
if self.player_position["x"] < 0:
|
|
self.player_position["x"] = 0
|
|
if self.player_position["x"] > DUNGEON_WIDTH:
|
|
self.player_position["x"] = DUNGEON_WIDTH
|
|
if self.player_position["y"] < 0:
|
|
self.player_position["y"] = 0
|
|
if self.player_position["y"] > DUNGEON_HEIGHT:
|
|
self.player_position["y"] = DUNGEON_HEIGHT
|
|
if self.player_position["r"] > 2*math.pi:
|
|
self.player_position["r"] = 0
|
|
if self.player_position["r"] < 0:
|
|
self.player_position["r"] = 2*math.pi
|
|
|
|
self.draw()
|
|
self.mapWindow.refresh()
|
|
self.raycastWindow.refresh()
|
|
|
|
# Calculate FPS
|
|
frames = frames + 1
|
|
if time.time() - lastFpsCalcTime > 1:
|
|
fps = frames/(time.time() - lastFpsCalcTime)
|
|
print(int(fps))
|
|
frames = 0
|
|
lastFpsCalcTime = time.time()
|
|
|
|
return 0
|
|
|
|
def movePlayerRelative(self, player_delta_x, player_delta_y):
|
|
# Prevent player from going into walls (X axis)
|
|
newPlayerX = int(self.player_position["x"] + player_delta_x)
|
|
mapX = int(newPlayerX / MAP_SCALE)
|
|
mapY = int(self.player_position["y"] / MAP_SCALE)
|
|
mapArrayPosition = mapY * MAP_SIZE + mapX
|
|
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
|
# Move player (X)
|
|
self.player_position["x"] = newPlayerX
|
|
|
|
# Prevent player from going into walls (Y axis)
|
|
newPlayerY = int(self.player_position["y"] + player_delta_y)
|
|
mapX = int(self.player_position["x"] / MAP_SCALE)
|
|
mapY = int(newPlayerY / MAP_SCALE)
|
|
mapArrayPosition = mapY * MAP_SIZE + mapX
|
|
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] == 0:
|
|
# Move player (Y)
|
|
self.player_position["y"] = newPlayerY
|
|
|
|
def draw(self):
|
|
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,0,0,255)) # Clears map screen
|
|
sdl2.ext.draw.fill(self.raycastSurface, sdl2.ext.Color(0,0,128,255), (0, 0, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws ceiling)
|
|
sdl2.ext.draw.fill(self.raycastSurface, sdl2.ext.Color(0,128,0,255), (0, RAYCAST_WIN_HEIGHT/2, RAYCAST_WIN_WIDTH, RAYCAST_WIN_HEIGHT/2)) # Clears upper raycast screen (draws floor)
|
|
|
|
self.draw2Dmap()
|
|
self.drawPlayer()
|
|
self.drawRays()
|
|
|
|
def drawPlayer(self):
|
|
# Player in 2D map
|
|
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(0,255,0,255), (self.player_position["x"] - 2, self.player_position["y"] - 2, 4, 4))
|
|
# Player line of sight in 2D map
|
|
ray = {
|
|
"x": int(self.player_position["x"] + math.cos(self.player_position["r"]) * 50), # deltaX + playerX
|
|
"y": int(self.player_position["y"] + math.sin(self.player_position["r"]) * 50) # deltaY + playerY
|
|
}
|
|
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(255,0,0,255), (self.player_position["x"], self.player_position["y"], ray["x"], ray["y"]))
|
|
|
|
|
|
def draw2Dmap(self):
|
|
# 2D map
|
|
for i in range(len(MAP)):
|
|
posX = i % MAP_SIZE * MAP_SCALE
|
|
posY = math.floor(i / MAP_SIZE) * MAP_SCALE
|
|
color = 0
|
|
if MAP[i] == 1:
|
|
color = 255
|
|
sdl2.ext.draw.fill(self.mapSurface, sdl2.ext.Color(color,color,color,255), (posX, posY, MAP_SCALE - 1, MAP_SCALE - 1))
|
|
|
|
def drawRays(self):
|
|
# Casts rays for raycasting
|
|
playerAngle = self.player_position["r"]
|
|
|
|
# Cast one ray for every window pixel, from -0,5 rads to +0,5 rads (about 60° viewing angle)
|
|
for i in range(RAYCAST_WIN_WIDTH):
|
|
rayAngle = playerAngle + (i/RAYCAST_WIN_WIDTH) - 0.5
|
|
if rayAngle < 0:
|
|
rayAngle = math.pi * 2 + rayAngle
|
|
if rayAngle > math.pi * 2:
|
|
rayAngle = rayAngle - math.pi * 2
|
|
|
|
# Check horizontal lines
|
|
dof = 0 # Depth of field
|
|
if rayAngle == 0 or rayAngle == math.pi:
|
|
# Looking left or right (ray will never intersect parallel lines)
|
|
rayY = self.player_position["y"]
|
|
rayX = self.player_position["x"] + DOF * MAP_SCALE
|
|
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
|
elif rayAngle > math.pi:
|
|
# Looking up
|
|
aTan = -1/math.tan(rayAngle)
|
|
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
|
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
|
yOffset = -MAP_SCALE
|
|
xOffset = -yOffset * aTan
|
|
else:
|
|
# Looking down
|
|
aTan = -1/math.tan(rayAngle)
|
|
rayY = (int(self.player_position["y"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
|
rayX = (self.player_position["y"] - rayY) * aTan + self.player_position["x"]
|
|
yOffset = MAP_SCALE
|
|
xOffset = -yOffset * aTan
|
|
|
|
# Check if we reached a wall
|
|
while dof < DOF:
|
|
mapX = int(rayX / MAP_SCALE)
|
|
mapY = int(rayY / MAP_SCALE)
|
|
mapArrayPosition = mapY * MAP_SIZE + mapX
|
|
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE and MAP[mapArrayPosition] != 0:
|
|
dof = DOF # Hit the wall: we are done, no need to do other checks
|
|
else:
|
|
# Didn't hit the wall: check successive horizontal line
|
|
rayX = rayX + xOffset
|
|
rayY = rayY + yOffset
|
|
dof = dof + 1
|
|
|
|
# Save horyzontal probe rays for later comparison with vertical
|
|
horizRayX = rayX
|
|
horizRayY = rayY
|
|
|
|
# Check vertical lines
|
|
dof = 0 # Depth of field
|
|
nTan = -math.tan(rayAngle)
|
|
xOffset = 0
|
|
yOffset = 0
|
|
if rayAngle == math.pi * 0.5 or rayAngle == math.pi * 1.5:
|
|
#if rayAngle == 0 or rayAngle == math.pi:
|
|
# Looking up or down (ray will never intersect vertical lines)
|
|
rayX = self.player_position["x"]
|
|
rayY = self.player_position["y"] + DOF * MAP_SCALE
|
|
dof = DOF # Set depth of field to maximum to avoid unneeded checks
|
|
elif rayAngle > math.pi * 0.5 and rayAngle < math.pi * 1.5:
|
|
# Looking left
|
|
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) - 0.00001
|
|
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
|
xOffset = -MAP_SCALE
|
|
yOffset = -xOffset * nTan
|
|
else:
|
|
# Looking right
|
|
rayX = (int(self.player_position["x"] / MAP_SCALE) * MAP_SCALE) + MAP_SCALE
|
|
rayY = (self.player_position["x"] - rayX) * nTan + self.player_position["y"]
|
|
xOffset = MAP_SCALE
|
|
yOffset = -xOffset * nTan
|
|
|
|
# Check if we reached a wall
|
|
while dof < DOF:
|
|
mapX = int(rayX / MAP_SCALE)
|
|
mapY = int(rayY / MAP_SCALE)
|
|
mapArrayPosition = mapY * MAP_SIZE + mapX
|
|
if mapArrayPosition >= 0 and mapArrayPosition < MAP_SIZE*MAP_SIZE-1 and MAP[mapArrayPosition] != 0:
|
|
dof = DOF # Hit the wall: we are done, no need to do other checks
|
|
else:
|
|
# Didn't hit the wall: check successive horizontal line
|
|
rayX = rayX + xOffset
|
|
rayY = rayY + yOffset
|
|
dof = dof + 1
|
|
|
|
horizDist = self.dist(self.player_position["x"], self.player_position["y"], horizRayX, horizRayY)
|
|
vertDist = self.dist(self.player_position["x"], self.player_position["y"], rayX, rayY)
|
|
shortestDist = vertDist
|
|
if vertDist > horizDist:
|
|
rayX = horizRayX
|
|
rayY = horizRayY
|
|
shortestDist = horizDist
|
|
|
|
# Draw rays in 2D view
|
|
sdl2.ext.draw.line(self.mapSurface, sdl2.ext.Color(0,0,255,255), (self.player_position["x"], self.player_position["y"], rayX, rayY))
|
|
|
|
|
|
# ------ Draw 3D view ------
|
|
|
|
# Calculate line height based on distance
|
|
lineHeight = MAP_SCALE * RAYCAST_WIN_HEIGHT / shortestDist
|
|
if lineHeight > RAYCAST_WIN_HEIGHT:
|
|
lineHeight = RAYCAST_WIN_HEIGHT
|
|
# Center line vertically in window
|
|
lineOffset = RAYCAST_WIN_HEIGHT / 2 - lineHeight / 2
|
|
|
|
# Simulate lighting based on wall incidence
|
|
color = sdl2.ext.Color(255,255,255,255)
|
|
if vertDist > horizDist:
|
|
color = sdl2.ext.Color(200,200,200,255)
|
|
|
|
# Draw line
|
|
sdl2.ext.draw.line(self.raycastSurface, color, (i, int(lineOffset), i, int(lineOffset + lineHeight)))
|
|
|
|
def dist(self, ax, ay, bx, by):
|
|
return math.sqrt((bx-ax)*(bx-ax) + (by-ay)*(by-ay))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
main = Main()
|
|
main.run()
|
|
except KeyboardInterrupt:
|
|
exit(0)
|