pato-z80-home-computer/pat80-computer/software/z80-assembly/os/monitor.asm

626 lines
21 KiB
NASM
Raw Permalink Normal View History

2020-11-23 08:47:23 +01:00
; Pat80 Memory Monitor
; @author Daniele Verducci
2021-07-11 09:49:42 +02:00
; @language: Z80 ASM
;
;
; This file is part of Pat80 Memory Monitor.
;
; Pat80 Memory Monitor is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; Pat80 Memory Monitor is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with Pat80 Memory Monitor. If not, see <http://www.gnu.org/licenses/>.
;
2020-11-23 08:47:23 +01:00
;
; Monitor commands (CMD $arg):
2020-11-25 08:53:41 +01:00
; H (HELP) Shows available commands
; D (DUMP) $pos Dumps bytes of memory starting at $pos
2020-11-25 08:53:41 +01:00
; S (SET) $pos $val Replaces byte at $pos with $val
2020-12-06 15:51:26 +01:00
; L (LOAD) $pos $val
2020-11-25 08:53:41 +01:00
; R (RUN) $pos Starts executing code from $pos
2020-12-15 17:34:50 +01:00
; A (ADB) Enters in Assembly Depoy Bridge mode: loads all the incoming bytes in application memory and starts executing.
2020-11-25 08:53:41 +01:00
; The commands are entered with a single letter and the program completes the command
2020-11-23 08:47:23 +01:00
include 'libs/strings.asm'
2020-11-23 08:47:23 +01:00
; CONSTANTS
2020-12-17 20:34:38 +01:00
MON_WELCOME: DB 10,"PAT80 MEMORY MONITOR 0.2",10,0
2020-11-25 08:53:41 +01:00
MON_COMMAND_HELP: DB "HELP",0 ; null terminated strings
MON_COMMAND_DUMP: DB "DUMP",0
2020-11-25 08:53:41 +01:00
MON_COMMAND_SET: DB "SET",0
2020-12-26 12:39:18 +01:00
MON_COMMAND_ZERO: DB "ZERO",0
2020-11-25 08:53:41 +01:00
MON_COMMAND_LOAD: DB "LOAD",0
MON_COMMAND_RUN: DB "RUN",0
2020-12-15 17:34:50 +01:00
MON_COMMAND_ADB: DB "ADB",0
2021-03-01 19:50:50 +01:00
MON_COMMAND_MEMTEST: DB "MEMTEST",0
MON_COMMAND_QUIT: DB "QUIT",0
2020-11-25 20:50:39 +01:00
MON_ARG_HEX: DB " 0x",0
2021-03-01 19:50:50 +01:00
MON_HELP: DB 10,"Available commands:\nHELP prints this message\nDUMP [ADDR] shows memory content\nSET [ADDR] sets memory content\nZERO [ADDR] [ADDR] sets all bytes to 0 in the specified range\nLOAD\nRUN [ADDR] executes code starting from ADDR\nADB starts Assembly Deploy Bridge\nMEMTEST checks ram boundaries\nQUIT exits",0
2020-12-15 17:34:50 +01:00
MON_MSG_ADB: DB 10,"Waiting for data.",0
MON_ERR_SYNTAX: DB " Syntax error",0
2021-03-15 20:12:23 +01:00
; MON_RAMTEST_INTRO: DB " Checking memory... ",0
; MON_RAMTEST_RAMSTART: DB " Ram starts at 0x",0
2020-12-21 18:28:09 +01:00
MON_DUMP_BYTES_LINES: EQU 8
MON_DUMP_BYTES_PER_LINE: EQU 8
2020-11-23 08:47:23 +01:00
Monitor_main:
2020-11-25 08:53:41 +01:00
; Print welcome string
ld bc, MON_WELCOME
call Sys_Print
2020-11-25 08:53:41 +01:00
monitor_main_loop:
; Newline
ld a, 10
call Sys_Printc
2020-11-25 08:53:41 +01:00
; Draw prompt char
ld a, 62 ; >
call Sys_Printc
2020-11-25 08:53:41 +01:00
; Read char from command line
call Sys_Readc ; blocking: returns when a character was read and placed in A reg
call Strings_charToUpper ; user may enter lowercase char: transform to upper
call Sys_Printc ; Print back the character to provide user feedback
2020-11-25 08:53:41 +01:00
; Switch case
ld hl, MON_COMMAND_HELP
cp (hl) ; check incoming char is equal to command's first char
2020-11-25 08:53:41 +01:00
jp z, monitor_help
ld hl, MON_COMMAND_DUMP
cp (hl)
2020-11-25 08:53:41 +01:00
jp z, monitor_dump
ld hl, MON_COMMAND_SET
cp (hl)
2020-11-25 08:53:41 +01:00
jp z, monitor_set
2020-12-26 12:39:18 +01:00
ld hl, MON_COMMAND_ZERO
cp (hl)
jp z, monitor_zero
ld hl, MON_COMMAND_LOAD
cp (hl)
2020-11-25 08:53:41 +01:00
jp z, monitor_load
ld hl, MON_COMMAND_RUN
cp (hl)
2020-11-25 08:53:41 +01:00
jp z, monitor_run
2020-12-15 17:34:50 +01:00
ld hl, MON_COMMAND_ADB
cp (hl)
2020-12-15 17:34:50 +01:00
jp z, monitor_adb
2021-03-15 20:12:23 +01:00
; ld hl, MON_COMMAND_MEMTEST
; cp (hl)
; jp z, monitor_memtest
ld hl, MON_COMMAND_QUIT
cp (hl)
jp z, monitor_quit
2020-12-06 15:51:26 +01:00
; Unrecognized command: print error and beep
ld bc, MON_ERR_SYNTAX
call Sys_Print
call Sys_Beep
2020-11-25 08:53:41 +01:00
jp monitor_main_loop
monitor_help:
ld bc, MON_COMMAND_HELP + 1 ; autocomplete command
call Sys_Print
2020-11-25 08:53:41 +01:00
ld bc, MON_HELP
call Sys_Print
jp monitor_main_loop
2020-11-25 08:53:41 +01:00
monitor_quit:
ld bc, MON_COMMAND_QUIT + 1 ; autocomplete command
call Sys_Print
; newline
ld a, 10
call Sys_Printc
; Restores registers and re-enable interrupts: when the BREAK key is pressed,
; a maskable interrupt is generated and the CPU jumps to 0x38 reset vector,
; where if finds a call to Memory monitor (see main.asm).
exx ; exchange registers
ex af, af'
; enable interrupts
ei
im 1 ; set interrupt mode 1 (on interrupt jumps to 0x38)
reti ; return from interrupt
; Asks the user for a memory position and shows the following 64 bytes of memory
; @uses a, b, c, d, e, h, l
monitor_dump:
2020-11-25 08:53:41 +01:00
ld bc, MON_COMMAND_DUMP + 1 ; autocomplete command
call Sys_Print
2020-12-17 20:34:38 +01:00
; Now read the address from the user
2020-12-16 23:39:24 +01:00
call monitor_arg_2byte ; returns the read bytes in hl
2020-12-17 20:34:38 +01:00
ld a, 10 ; newline
call Sys_Printc
2020-12-17 20:34:38 +01:00
; now start displaying bytes from memory
ld e, MON_DUMP_BYTES_LINES ; the number of lines to display
monitor_dump_show_bytes_loop:
ld d, MON_DUMP_BYTES_PER_LINE*2 ; the number of bytes per line to display (*2 as we display two times the same byte: once hex and once ascii)
2020-12-17 20:38:36 +01:00
; Print current address
ld a, h
call monitor_printHexByte
ld a, l
call monitor_printHexByte
; print four spaces
2020-12-17 20:38:36 +01:00
ld a, 32
call Sys_Printc
call Sys_Printc
call Sys_Printc
call Sys_Printc
monitor_dump_show_bytes_line_loop: ; counts down from 15 to 0
ld a, d
sub MON_DUMP_BYTES_PER_LINE + 1
jp m, monitor_dump_show_bytes_line_loop_ascii ; jp if
; if position is 8 to 15, print hex value at mem position
ld a, (hl)
; print hex byte
call monitor_printHexByte
; print space
ld a, 32
call Sys_Printc
; if position is 4, print a second space (to group nibbles)
ld a, d
cp MON_DUMP_BYTES_PER_LINE / 2 + MON_DUMP_BYTES_PER_LINE + 1
jp nz, no_second_space
; print second space
ld a, 32
call Sys_Printc
no_second_space:
; move to next mem position
inc hl
; decrement "nth byte on the line" counter
dec d
jp monitor_dump_show_bytes_line_loop
; if position is 0 to 7, print ascii
monitor_dump_show_bytes_line_loop_ascii:
; is this the first ascii char printed in this line?
ld a, d
cp MON_DUMP_BYTES_PER_LINE
jp nz, no_mempos_decr ; no need to decrement, already done
; do this only once: printing hex values we advanced the counter by 8 positions. Bring it back.
ld bc, MON_DUMP_BYTES_PER_LINE
sbc hl, bc
; print 3 spaces to separate hex from ascii
ld a, 32
call Sys_Printc
call Sys_Printc
call Sys_Printc
no_mempos_decr:
; print ascii
ld a, (hl)
call monitor_printAsciiByte
; print space
ld a, 32
call Sys_Printc
; if position is 12 (8+4), print a second space (to group nibbles)
ld a, d
cp MON_DUMP_BYTES_PER_LINE / 2 + 1
jp nz, no_second_space2
; print second space
ld a, 32
call Sys_Printc
no_second_space2:
; move to next mem position
inc hl
; decrement counter: if non zero continue loop
dec d
jp nz, monitor_dump_show_bytes_line_loop
2020-12-17 20:34:38 +01:00
; print newline
ld a, 10
call Sys_Printc
2020-12-17 20:34:38 +01:00
; decrement line counter
dec e
jp nz, monitor_dump_show_bytes_loop ; if line counter is not 0, print another line
; if line counter 0, finished
jp monitor_main_loop
2020-11-25 08:53:41 +01:00
2020-12-26 08:35:49 +01:00
; Asks user for a memory position and a byte and puts the byte in memory
; @uses a, b, c, h, l
2020-11-25 08:53:41 +01:00
monitor_set:
ld bc, MON_COMMAND_SET + 1 ; autocomplete command
call Sys_Print
; Now read the memory address to be changed from the user
call monitor_arg_2byte ; returns the read bytes in hl
; Start looping memory addresses
monitor_set_byte_loop:
2020-12-26 08:35:49 +01:00
ld a, 10 ; newline
call Sys_Printc
; Print current address
ld a, h
call monitor_printHexByte
ld a, l
call monitor_printHexByte
; print two spaces
ld a, 32
call Sys_Printc
call Sys_Printc
; print previous memory content (hex)
ld a, (hl)
call monitor_printHexByte
2020-12-26 08:35:49 +01:00
; print two spaces
ld a, 32
call Sys_Printc
call Sys_Printc
; print previous memory content (ascii)
ld a, (hl)
call monitor_printAsciiByte
; print space
ld a, 32
call Sys_Printc
; ask the user the new memory content
2020-12-26 08:35:49 +01:00
call monitor_arg_byte ; returns the read byte in a, exit code in b
; find if user pressed Q/ENTER
ld c, a ; save a
ld a, b ; exit code in a
cp 1 ; check if user pressed Q
jp z, monitor_main_loop ; user wants to exit
ld a, b
cp 2 ; check if user pressed ENTER
jp z, monitor_set_skipbyte ; user doesn't want to replace current byte: skip
; user didn't press Q/ENTER: he inserted a valid byte
; print two spaces
ld a, 32
call Sys_Printc
call Sys_Printc
2020-12-26 08:35:49 +01:00
ld a, c ; restore valid byte in a
call monitor_printAsciiByte ; print user-inserted byte in ascii
ld a, c ; restore valid byte in a
ld (hl), a ; write new byte to memory
2020-12-26 08:35:49 +01:00
monitor_set_skipbyte:
inc hl ; next memory position
2020-12-26 08:35:49 +01:00
jp monitor_set_byte_loop
2020-11-23 08:47:23 +01:00
2020-12-26 12:39:18 +01:00
; Asks user for a memory range and sets all bytes to zero in that range in memory
; @uses a, b, c, h, l
monitor_zero: ; TODO: bugged, doesn't exit cycle
ld bc, MON_COMMAND_ZERO + 1 ; autocomplete command
call Sys_Print
2020-12-26 12:39:18 +01:00
; Now read the starting memory address
call monitor_arg_2byte ; returns the read bytes in hl
; starting addr in bc
ld b, h
ld c, l
call monitor_arg_2byte ; ending addr in hl
; Start looping memory addresses (from last to first)
monitor_zero_loop:
ld (hl), 0 ; set byte to 0 in memory
dec hl ; next byte
; check if we reached start addr (one byte at time)
ld a, b
cp h
jp nz, monitor_zero_loop ; first byte is different, continue loop
; first byte is equal, check second one
ld a, c
cp l
jp nz, monitor_zero_loop ; second byte is different, continue loop
; reached destination addr: zero the last byte and return
ld (hl), 0 ; set byte to 0 in memory
ret
2020-11-25 08:53:41 +01:00
monitor_load:
ld bc, MON_COMMAND_LOAD + 1 ; autocomplete command
call Sys_Print
; TODO: When implemented, re-enable interrupts before run application
jp monitor_main_loop
2020-11-25 08:53:41 +01:00
monitor_run:
ld bc, MON_COMMAND_RUN + 1 ; autocomplete command
call Sys_Print
; Now read the memory address to be executed from the user
2020-12-21 18:28:09 +01:00
call monitor_arg_2byte ; returns the read bytes in hl
ld a, 10 ; newline
call Sys_Printc
; enable interrupts
ei
im 1 ; set interrupt mode 1 (on interrupt jumps to 0x38)
; pop the last entry on the stack: this is needed (as the monitor
; runs in an interrupt) to counter-balance the missing reti statement
pop bc
; execute code
jp (hl)
2020-12-15 17:34:50 +01:00
monitor_adb:
ld bc, MON_COMMAND_ADB + 1 ; autocomplete command
call Sys_Print
; start copying incoming data to application space
call monitor_copyTermToAppMem
; call monitor_enable_int ; re-enable interrupts
;jp APP_SPACE ; Start executing code
; ld bc, APP_SPACE
; call Sys_Print
jp monitor_main_loop
2020-11-25 08:53:41 +01:00
2020-12-16 23:39:24 +01:00
; Prints "0x" and read 1 hex byte (2 hex digits, e.g. 0x8C)
2020-12-26 08:35:49 +01:00
; Can be cancelled with Q/ENTER
; @return a the read byte, b the exit code (0=valid byte in a, 1=Q, 2=ENTER)
2020-12-16 23:39:24 +01:00
; @uses a, b, c
2020-11-25 20:50:39 +01:00
monitor_arg_byte:
; Print 0x... prompt
ld bc, MON_ARG_HEX
call Sys_Print
2020-12-16 23:39:24 +01:00
; Read 2 digits
call monitor_arg_byte_impl
2020-11-25 20:50:39 +01:00
ret
2020-12-16 23:39:24 +01:00
; Prints "0x" and reads 2 hex bytes (4 hex digits e.g. 0x3F09)
2020-12-26 08:35:49 +01:00
; Ignores Q/ENTER keys
2020-12-16 23:39:24 +01:00
; @return hl the two read bytes
; @uses a, b, c, h, l
2020-11-25 20:50:39 +01:00
monitor_arg_2byte:
; Print 0x... prompt
ld bc, MON_ARG_HEX
call Sys_Print
2020-12-16 23:39:24 +01:00
; Read 2 digits
call monitor_arg_byte_impl
ld h, a ; move result to h
; Read 2 digits
call monitor_arg_byte_impl
ld l, a ; move result to l
ret
; Read 2 hex digits
2020-12-26 08:35:49 +01:00
; @return a the read byte, b the exit code
; (0 if no control key was, pressed, 1 for Q, 2 for RETURN)
2020-12-16 23:39:24 +01:00
; @uses a, b, c
monitor_arg_byte_impl:
2020-12-26 08:35:49 +01:00
; Receive first hex digit. Value in a, exit code in b
2020-11-25 20:50:39 +01:00
call monitor_readHexDigit
2020-12-26 08:35:49 +01:00
; check exit code to find if user pressed esc or return
ld c, a ; save a
ld a, b ; load exit code in a
cp 0
jp nz, monitor_arg_byte_impl_exitcode ; user pressed Q/RETURN key
; user didn't press Q/RETURN: returned nibble is valid
ld a, c ; restore a and discard c
; First hex digit is the most signif nibble, so rotate left by 4 bits
2020-12-26 08:35:49 +01:00
rlca
rlca
rlca
rlca
; the lower nibble must now be discarded
and %11110000
2020-12-16 23:39:24 +01:00
ld c, a ; save shifted nibble in c
; Read second hex digit
2020-11-25 20:50:39 +01:00
call monitor_readHexDigit
2020-12-16 23:39:24 +01:00
; Join the two nibbles in a single byte: second digit is already in a,
; so we OR with the previously shifted c and obtain the complete byte in a.
or c
2020-11-25 20:50:39 +01:00
ret
2020-12-26 08:35:49 +01:00
monitor_arg_byte_impl_exitcode:
; user pressed Q/RETURN key. Exit code is now in a.
ld b, a ; move exit code in b
ld a, 0 ; clear a
ret
; Reads an hex digit (0 to 9, A to F)
2020-12-26 08:35:49 +01:00
; @return a the read nibble (or 0 if Q/RETURN was pressed), b the exit code
; (0 if no control key was, pressed, 1 for Q, 2 for RETURN)
2020-12-16 23:39:24 +01:00
; @uses a, b
2020-11-25 20:50:39 +01:00
monitor_readHexDigit:
call Sys_Readc
2020-12-26 08:35:49 +01:00
; check if user pressed Q
; if user pressed Q, return exit code 1 in b and 0 in a
cp 81
jp z, monitor_readHexDigit_esc
; check if user pressed RETURN
; if user pressed RETURN, return exit code 2 in b and 0 in a
cp 10
jp z, monitor_readHexDigit_return
2020-11-25 20:50:39 +01:00
; check if is a valid hex digit (0-9 -> ascii codes 48 to 57; A-F -> ascii codes 65 to 70)
; first check if is between 0 and F(ascii codes 48 to 70)
ld b, a
sub a, 48
jp m, monitor_readHexDigit ; if negative (s), ascii code is under 48: ignore char
ld a, b
sub a, 71 ; 71 because we want to include 70 and the result must be negative
jp p, monitor_readHexDigit ; if not negative (ns), ascii code is over 70: ignore it
; check if is a valid int (<=57)
ld a, b
sub a, 58
jp p, monitor_readHexDigit_char ; if not negative (ns), maybe is a char
; otherwise is a number! First print for visive feedback
ld a, b
call Sys_Printc
2020-11-25 20:50:39 +01:00
; then convert to its value subtracting 48
sub a, 48
2020-12-26 08:35:49 +01:00
ld b, 0 ; set b to exit code 0 to represent "valid value in a"
2020-11-25 20:50:39 +01:00
ret
monitor_readHexDigit_char:
; check if is A, B, C, D, E, F (ascii codes 65 to 70). We already checked it is less than 70.
ld a, b
sub a, 65
jp m, monitor_readHexDigit ; if negative (s), ascii code is under 65: ignore char
; otherwise is a valid char (A-F). Print for visive feedback
ld a, b
call Sys_Printc
2020-11-25 20:50:39 +01:00
; Its numeric value is 10 (A) to 15 (F). To obtain this, subtract 55.
sub a, 55
2020-12-26 08:35:49 +01:00
ld b, 0 ; set b to exit code 0 to represent "valid value in a"
2020-11-25 20:50:39 +01:00
ret
2020-11-25 08:53:41 +01:00
2020-12-26 08:35:49 +01:00
monitor_readHexDigit_esc:
ld a, 0
ld b, 1
ret
monitor_readHexDigit_return:
ld a, 0
ld b, 2
ret
2020-12-17 13:52:28 +01:00
; Prints a byte in hex format: splits it in two nibbles and prints the two hex digits
2020-12-26 08:35:49 +01:00
; NOTE: The byte in a will be modified!
2020-12-17 13:52:28 +01:00
; @param a the byte to print
; @uses a, b, c
monitor_printHexByte:
ld c, a
2020-12-17 20:34:38 +01:00
; rotate out the least significant nibble to obtain a byte with the most significant nibble
2020-12-17 13:52:28 +01:00
; in the least significant nibble position
rrca
rrca
rrca
rrca
2020-12-17 20:34:38 +01:00
; the upper nibble must now be discarded
and %00001111
2020-12-17 13:52:28 +01:00
call monitor_printHexDigit
ld a, c
and %00001111 ; bitwise and: set to 0 the most significant nibble and preserve the least
call monitor_printHexDigit
ret
; Prints an hex digit
; @param a provides the byte containing, in the LSBs, the nibble to print
; @uses a, b
monitor_printHexDigit:
; check the input is valid (0 to 15)
ld b, a
2020-12-17 20:34:38 +01:00
sub 16 ; subtract 16 instead of 15 cause 0 is positive
2020-12-17 13:52:28 +01:00
; if positive, the input is invalid. Do not print anything.
ret p
; now check if the digit is a letter (10 to 15 -> A to F)
ld a, b ; restore a
sub 10
; if a is positive, the digit is a letter
jp p, monitor_printHexDigit_letter
ld a, b ; restore a
; add 48 (the ASCII number for 0) to obtain the corresponding number
add 48
call Sys_Printc
2020-12-17 13:52:28 +01:00
ret
monitor_printHexDigit_letter:
ld a, b ; restore a
2020-12-17 20:34:38 +01:00
; to obtain the corresponding letter we should subtract 10 (so we count from A)
; and add 65 (the ASCII number for A). So -10+65=+55 we add only 55.
add 55
call Sys_Printc
2020-12-17 13:52:28 +01:00
ret
2020-12-17 20:34:38 +01:00
; Prints an ASCII character. Similar to system Print function, but
; ignores control characters and replaces any non-printable character with a dot.
2020-12-26 08:35:49 +01:00
; NOTE: the a register is modified
2020-12-17 20:34:38 +01:00
; @param a the byte to print
; @uses a, b
monitor_printAsciiByte:
ld b, a ; save a (it will be modified)
; if < 32 is a control char, non printable
sub 32
jp m, monitor_printAsciiByte_nonprintable
ld a, b ; restore a
; if >= 127 is an extended char, may not be printable
sub 127
jp p, monitor_printAsciiByte_nonprintable
; otherwise is a printable ascii char
ld a, b ; restore a
call Sys_Printc
2020-12-17 20:34:38 +01:00
ret
monitor_printAsciiByte_nonprintable:
ld a, 46 ; print dot
call Sys_Printc
2020-12-17 20:34:38 +01:00
ret
2020-12-17 13:52:28 +01:00
; Copy data from parallel terminal to application memory. This is tought to be used with the ADB function of the Pat80 Python Terminal.
; Uses TERM_DATA_AVAIL_REG to check if a byte is available before reading it.
; The first two received bytes (heading bytes) defines the stream length (MSB first), the rest of the bytes are copied to memory.
; The copy is completed when the number of bytes defined in the heading bytes are received.
; @uses a, b, c, d, h, l
monitor_copyTermToAppMem:
; d contains the current status.
; 2 = waiting for first heading byte
; 1 = waiting for second heading byte
; 0 = heading bytes received, now receiving binary stream
ld d, 2
ld hl, APP_SPACE ; we will write in APP_SPACE
monitor_copyTermToAppMem_loop:
ld a, d
cp 2 ; check if we are receiving first header byte
jp z, monitor_copyTermToAppMem_loop_rec_head_byte_1
ld a, d
cp 1 ; check if we are receiving second header byte
jp z, monitor_copyTermToAppMem_loop_rec_head_byte_2
; we are receiving binary stream: read byte and save to memory
call Term_readb ; reads a byte from terminal
ld (hl), a ; copy byte to memory
inc hl ; move to next memory position
dec bc ; decrement remaining bytes counter
; check if we reached the number of bytes to be transferred
ld a, b
cp 0
jp nz, monitor_copyTermToAppMem_loop ; continue loop
ld a, c
cp 0
jp nz, monitor_copyTermToAppMem_loop ; continue loop
; all bytes received, return
ret
monitor_copyTermToAppMem_loop_rec_head_byte_1:
; we are receiving first header byte: read byte and save to b
call Term_readb ; reads a byte from terminal
ld b, a
dec d
jp monitor_copyTermToAppMem_loop ; continue loop
monitor_copyTermToAppMem_loop_rec_head_byte_2:
; we are receiving second header byte: read byte and save to c
call Term_readb ; reads a byte from terminal
ld c, a
dec d
jp monitor_copyTermToAppMem_loop ; continue loop
2021-03-01 09:17:05 +01:00
; Runs a memory test to identify ram memory boundaries and check the ram is working.
; Starting from last memory position, writes 0xFF, reads it back, writes 0x00, reads it back.
; Exits when the first value differs from the written value (this may be caused by a bad ram
; block or the start of rom in memory map). Prints the last good address on exit.
2021-03-01 19:50:50 +01:00
; monitor_memtest:
2021-07-11 09:49:42 +02:00
; ld bc, MON_COMMAND_MEMTEST + 1 ; autocomplete command
; call Sys_Print
2021-03-01 19:50:50 +01:00
; ; Prints intro
2021-07-11 09:49:42 +02:00
; ld bc, MON_RAMTEST_INTRO
; call Sys_Print
2021-03-01 19:50:50 +01:00
; ; Starts checking
; ld hl, MEM_END
; monitor_memtest_loop:
; ; Save current byte value for later restore
2021-07-11 09:49:42 +02:00
; ld c, (hl)
; ; Write 0xFF
2021-03-01 19:50:50 +01:00
; ld a, 0xFF
; ld (hl), a
; ; Read and compare 0xFF
; ld a, (hl)
; cp 0xFF
; jp nz, monitor_memtest_badram
; ; Write 0x00
; ld a, 0x00
; ld (hl), a
; ; Read and compare 0xFF
; ld a, (hl)
; cp 0x00
; jp nz, monitor_memtest_badram
; ; Memory byte is good, restore previous value
2021-07-11 09:49:42 +02:00
; ld (hl), c
; ; Next one
2021-03-01 19:50:50 +01:00
; dec hl
; jp monitor_memtest_loop
; monitor_memtest_badram:
; ; Found a bad memory byte (or entered rom block).
; ld bc, MON_RAMTEST_RAMSTART
; call Sys_Print
; ; Print last valid memory addr
2021-07-11 09:49:42 +02:00
; inc hl
; ld a, h
; call monitor_printHexByte
; ld a, l
; call monitor_printHexByte
; ; Newline
; ld a, 10
; call Sys_Printc
; ; Back to menu
2021-03-01 19:50:50 +01:00
; jp monitor_main_loop
2020-11-25 08:53:41 +01:00