Merge branch 'master' into TerminalWithCommands

This commit is contained in:
Daniele Verducci (ZenPenguin) 2021-01-03 08:49:07 +01:00
commit 17153486a6
37 changed files with 499 additions and 13 deletions

View File

@ -40,7 +40,7 @@ Snd_beep:
ld a,%00001000
out (SND_DATA_REG),a
; wait
ld bc, (TIME_DUR_MILLIS * 100)
ld bc, (TIME_DUR_MILLIS * 10)
call Time_delay55
; silence ch1
ld a,%10011111

View File

@ -1,14 +1,16 @@
; Time library
; @author Daniele Verducci
; Duration in cpu cycles / 55 (change these values based on CPU frequency)
TIME_DUR_SECOND: EQU 2545
TIME_DUR_MILLIS: EQU 3
TIME_DUR_SECOND: EQU 1818
TIME_DUR_MILLIS: EQU 2
; Wait bc * 55 states
; Use 1 iteration as delay between I/O bus writes
; @param bc The number of iterations. Each iteration is 55 states long.
Time_delay55:
ret
bit 0,a ; 8
bit 0,a ; 8
bit 0,a ; 8

View File

@ -104,4 +104,10 @@ Sysinit:
; Run memory monitor
call Monitor_main
; DEBUG: Echo chars
; loop:
; call Term_readc
; call Term_printc
; jp loop
halt

View File

@ -0,0 +1,5 @@
pal-adapter:
@echo "Building pal adapter rom..."
@avra main.asm
@echo "Writing to ATMEGA1284..."
@minipro -w main.hex -p ATMEGA1284

View File

@ -0,0 +1,13 @@
# Atmega Microcontroller
## Build ASM code
`avra filename.asm` (generates *filename.hex*)
## Flash
### Rom
`minipro -w filename.hex -p ATMEGA1284`
### Fuses
Read fuses: `minipro -r -c config -p ATMEGA1284` (`-r -c config` means read configuration (fuses))
Fuses must be written all together, so read the current values, edit the generated file and write it.
The meaning of every bis is in the conf file.
Write fuses: `minipro -w fuses.conf -c config -p ATMEGA1284`

View File

@ -0,0 +1,276 @@
; ***** I/O REGISTER DEFINITIONS *****************************************
; NOTE:
; Definitions marked "MEMORY MAPPED"are extended I/O ports
; and cannot be used with IN/OUT instructions
.equ UDR1 = 0xce ; MEMORY MAPPED
.equ UBRR1L = 0xcc ; MEMORY MAPPED
.equ UBRR1H = 0xcd ; MEMORY MAPPED
.equ UCSR1C = 0xca ; MEMORY MAPPED
.equ UCSR1B = 0xc9 ; MEMORY MAPPED
.equ UCSR1A = 0xc8 ; MEMORY MAPPED
.equ UDR0 = 0xc6 ; MEMORY MAPPED
.equ UBRR0L = 0xc4 ; MEMORY MAPPED
.equ UBRR0H = 0xc5 ; MEMORY MAPPED
.equ UCSR0C = 0xc2 ; MEMORY MAPPED
.equ UCSR0B = 0xc1 ; MEMORY MAPPED
.equ UCSR0A = 0xc0 ; MEMORY MAPPED
.equ TWAMR = 0xbd ; MEMORY MAPPED
.equ TWCR = 0xbc ; MEMORY MAPPED
.equ TWDR = 0xbb ; MEMORY MAPPED
.equ TWAR = 0xba ; MEMORY MAPPED
.equ TWSR = 0xb9 ; MEMORY MAPPED
.equ TWBR = 0xb8 ; MEMORY MAPPED
.equ ASSR = 0xb6 ; MEMORY MAPPED
.equ OCR2B = 0xb4 ; MEMORY MAPPED
.equ OCR2A = 0xb3 ; MEMORY MAPPED
.equ TCNT2 = 0xb2 ; MEMORY MAPPED
.equ TCCR2B = 0xb1 ; MEMORY MAPPED
.equ TCCR2A = 0xb0 ; MEMORY MAPPED
.equ OCR3BL = 0x9a ; MEMORY MAPPED
.equ OCR3BH = 0x9b ; MEMORY MAPPED
.equ OCR3AL = 0x98 ; MEMORY MAPPED
.equ OCR3AH = 0x99 ; MEMORY MAPPED
.equ ICR3L = 0x96 ; MEMORY MAPPED
.equ ICR3H = 0x97 ; MEMORY MAPPED
.equ TCNT3L = 0x94 ; MEMORY MAPPED
.equ TCNT3H = 0x95 ; MEMORY MAPPED
.equ TCCR3C = 0x92 ; MEMORY MAPPED
.equ TCCR3B = 0x91 ; MEMORY MAPPED
.equ TCCR3A = 0x90 ; MEMORY MAPPED
.equ OCR1BL = 0x8a ; MEMORY MAPPED
.equ OCR1BH = 0x8b ; MEMORY MAPPED
.equ OCR1AL = 0x88 ; MEMORY MAPPED
.equ OCR1AH = 0x89 ; MEMORY MAPPED
.equ ICR1L = 0x86 ; MEMORY MAPPED
.equ ICR1H = 0x87 ; MEMORY MAPPED
.equ TCNT1L = 0x84 ; MEMORY MAPPED
.equ TCNT1H = 0x85 ; MEMORY MAPPED
.equ TCCR1C = 0x82 ; MEMORY MAPPED
.equ TCCR1B = 0x81 ; MEMORY MAPPED
.equ TCCR1A = 0x80 ; MEMORY MAPPED
.equ DIDR1 = 0x7f ; MEMORY MAPPED
.equ DIDR0 = 0x7e ; MEMORY MAPPED
.equ ADMUX = 0x7c ; MEMORY MAPPED
.equ ADCSRB = 0x7b ; MEMORY MAPPED
.equ ADCSRA = 0x7a ; MEMORY MAPPED
.equ ADCH = 0x79 ; MEMORY MAPPED
.equ ADCL = 0x78 ; MEMORY MAPPED
.equ PCMSK3 = 0x73 ; MEMORY MAPPED
.equ TIMSK3 = 0x71 ; MEMORY MAPPED
.equ TIMSK2 = 0x70 ; MEMORY MAPPED
.equ TIMSK1 = 0x6f ; MEMORY MAPPED
.equ TIMSK0 = 0x6e ; MEMORY MAPPED
.equ PCMSK2 = 0x6d ; MEMORY MAPPED
.equ PCMSK1 = 0x6c ; MEMORY MAPPED
.equ PCMSK0 = 0x6b ; MEMORY MAPPED
.equ EICRA = 0x69 ; MEMORY MAPPED
.equ PCICR = 0x68 ; MEMORY MAPPED
.equ OSCCAL = 0x66 ; MEMORY MAPPED
.equ PRR1 = 0x65 ; MEMORY MAPPED
.equ PRR0 = 0x64 ; MEMORY MAPPED
.equ CLKPR = 0x61 ; MEMORY MAPPED
.equ WDTCSR = 0x60 ; MEMORY MAPPED
.equ SREG = 0x3f
.equ SPL = 0x3d
.equ SPH = 0x3e
.equ RAMPZ = 0x3b
.equ SPMCSR = 0x37
.equ MCUCR = 0x35
.equ MCUSR = 0x34
.equ SMCR = 0x33
.equ OCDR = 0x31
.equ ACSR = 0x30
.equ SPDR = 0x2e
.equ SPSR = 0x2d
.equ SPCR = 0x2c
.equ GPIOR2 = 0x2b
.equ GPIOR1 = 0x2a
.equ OCR0B = 0x28
.equ OCR0A = 0x27
.equ TCNT0 = 0x26
.equ TCCR0B = 0x25
.equ TCCR0A = 0x24
.equ GTCCR = 0x23
.equ EEARH = 0x22
.equ EEARL = 0x21
.equ EEDR = 0x20
.equ EECR = 0x1f
.equ GPIOR0 = 0x1e
.equ EIMSK = 0x1d
.equ EIFR = 0x1c
.equ PCIFR = 0x1b
.equ TIFR3 = 0x18
.equ TIFR2 = 0x17
.equ TIFR1 = 0x16
.equ TIFR0 = 0x15
.equ PORTD = 0x0b
.equ DDRD = 0x0a
.equ PIND = 0x09
.equ PORTC = 0x08
.equ DDRC = 0x07
.equ PINC = 0x06
.equ PORTB = 0x05
.equ DDRB = 0x04
.equ PINB = 0x03
.equ PORTA = 0x02
.equ DDRA = 0x01
.equ PINA = 0x00
; ***** PORTA ************************
; PORTA - Port A Data Register
.equ PORTA0 = 0 ; Port A Data Register bit 0
.equ PA0 = 0 ; For compatibility
.equ PORTA1 = 1 ; Port A Data Register bit 1
.equ PA1 = 1 ; For compatibility
.equ PORTA2 = 2 ; Port A Data Register bit 2
.equ PA2 = 2 ; For compatibility
.equ PORTA3 = 3 ; Port A Data Register bit 3
.equ PA3 = 3 ; For compatibility
.equ PORTA4 = 4 ; Port A Data Register bit 4
.equ PA4 = 4 ; For compatibility
.equ PORTA5 = 5 ; Port A Data Register bit 5
.equ PA5 = 5 ; For compatibility
.equ PORTA6 = 6 ; Port A Data Register bit 6
.equ PA6 = 6 ; For compatibility
.equ PORTA7 = 7 ; Port A Data Register bit 7
.equ PA7 = 7 ; For compatibility
; DDRA - Port A Data Direction Register
.equ DDA0 = 0 ; Data Direction Register, Port A, bit 0
.equ DDA1 = 1 ; Data Direction Register, Port A, bit 1
.equ DDA2 = 2 ; Data Direction Register, Port A, bit 2
.equ DDA3 = 3 ; Data Direction Register, Port A, bit 3
.equ DDA4 = 4 ; Data Direction Register, Port A, bit 4
.equ DDA5 = 5 ; Data Direction Register, Port A, bit 5
.equ DDA6 = 6 ; Data Direction Register, Port A, bit 6
.equ DDA7 = 7 ; Data Direction Register, Port A, bit 7
; PINA - Port A Input Pins
.equ PINA0 = 0 ; Input Pins, Port A bit 0
.equ PINA1 = 1 ; Input Pins, Port A bit 1
.equ PINA2 = 2 ; Input Pins, Port A bit 2
.equ PINA3 = 3 ; Input Pins, Port A bit 3
.equ PINA4 = 4 ; Input Pins, Port A bit 4
.equ PINA5 = 5 ; Input Pins, Port A bit 5
.equ PINA6 = 6 ; Input Pins, Port A bit 6
.equ PINA7 = 7 ; Input Pins, Port A bit 7
; ***** PORTB ************************
; PORTB - Port B Data Register
.equ PORTB0 = 0 ; Port B Data Register bit 0
.equ PB0 = 0 ; For compatibility
.equ PORTB1 = 1 ; Port B Data Register bit 1
.equ PB1 = 1 ; For compatibility
.equ PORTB2 = 2 ; Port B Data Register bit 2
.equ PB2 = 2 ; For compatibility
.equ PORTB3 = 3 ; Port B Data Register bit 3
.equ PB3 = 3 ; For compatibility
.equ PORTB4 = 4 ; Port B Data Register bit 4
.equ PB4 = 4 ; For compatibility
.equ PORTB5 = 5 ; Port B Data Register bit 5
.equ PB5 = 5 ; For compatibility
.equ PORTB6 = 6 ; Port B Data Register bit 6
.equ PB6 = 6 ; For compatibility
.equ PORTB7 = 7 ; Port B Data Register bit 7
.equ PB7 = 7 ; For compatibility
; DDRB - Port B Data Direction Register
.equ DDB0 = 0 ; Port B Data Direction Register bit 0
.equ DDB1 = 1 ; Port B Data Direction Register bit 1
.equ DDB2 = 2 ; Port B Data Direction Register bit 2
.equ DDB3 = 3 ; Port B Data Direction Register bit 3
.equ DDB4 = 4 ; Port B Data Direction Register bit 4
.equ DDB5 = 5 ; Port B Data Direction Register bit 5
.equ DDB6 = 6 ; Port B Data Direction Register bit 6
.equ DDB7 = 7 ; Port B Data Direction Register bit 7
; PINB - Port B Input Pins
.equ PINB0 = 0 ; Port B Input Pins bit 0
.equ PINB1 = 1 ; Port B Input Pins bit 1
.equ PINB2 = 2 ; Port B Input Pins bit 2
.equ PINB3 = 3 ; Port B Input Pins bit 3
.equ PINB4 = 4 ; Port B Input Pins bit 4
.equ PINB5 = 5 ; Port B Input Pins bit 5
.equ PINB6 = 6 ; Port B Input Pins bit 6
.equ PINB7 = 7 ; Port B Input Pins bit 7
; ***** PORTC ************************
; PORTC - Port C Data Register
.equ PORTC0 = 0 ; Port C Data Register bit 0
.equ PC0 = 0 ; For compatibility
.equ PORTC1 = 1 ; Port C Data Register bit 1
.equ PC1 = 1 ; For compatibility
.equ PORTC2 = 2 ; Port C Data Register bit 2
.equ PC2 = 2 ; For compatibility
.equ PORTC3 = 3 ; Port C Data Register bit 3
.equ PC3 = 3 ; For compatibility
.equ PORTC4 = 4 ; Port C Data Register bit 4
.equ PC4 = 4 ; For compatibility
.equ PORTC5 = 5 ; Port C Data Register bit 5
.equ PC5 = 5 ; For compatibility
.equ PORTC6 = 6 ; Port C Data Register bit 6
.equ PC6 = 6 ; For compatibility
.equ PORTC7 = 7 ; Port C Data Register bit 7
.equ PC7 = 7 ; For compatibility
; DDRC - Port C Data Direction Register
.equ DDC0 = 0 ; Port C Data Direction Register bit 0
.equ DDC1 = 1 ; Port C Data Direction Register bit 1
.equ DDC2 = 2 ; Port C Data Direction Register bit 2
.equ DDC3 = 3 ; Port C Data Direction Register bit 3
.equ DDC4 = 4 ; Port C Data Direction Register bit 4
.equ DDC5 = 5 ; Port C Data Direction Register bit 5
.equ DDC6 = 6 ; Port C Data Direction Register bit 6
.equ DDC7 = 7 ; Port C Data Direction Register bit 7
; PINC - Port C Input Pins
.equ PINC0 = 0 ; Port C Input Pins bit 0
.equ PINC1 = 1 ; Port C Input Pins bit 1
.equ PINC2 = 2 ; Port C Input Pins bit 2
.equ PINC3 = 3 ; Port C Input Pins bit 3
.equ PINC4 = 4 ; Port C Input Pins bit 4
.equ PINC5 = 5 ; Port C Input Pins bit 5
.equ PINC6 = 6 ; Port C Input Pins bit 6
.equ PINC7 = 7 ; Port C Input Pins bit 7
; ***** PORTD ************************
; PORTD - Port D Data Register
.equ PORTD0 = 0 ; Port D Data Register bit 0
.equ PD0 = 0 ; For compatibility
.equ PORTD1 = 1 ; Port D Data Register bit 1
.equ PD1 = 1 ; For compatibility
.equ PORTD2 = 2 ; Port D Data Register bit 2
.equ PD2 = 2 ; For compatibility
.equ PORTD3 = 3 ; Port D Data Register bit 3
.equ PD3 = 3 ; For compatibility
.equ PORTD4 = 4 ; Port D Data Register bit 4
.equ PD4 = 4 ; For compatibility
.equ PORTD5 = 5 ; Port D Data Register bit 5
.equ PD5 = 5 ; For compatibility
.equ PORTD6 = 6 ; Port D Data Register bit 6
.equ PD6 = 6 ; For compatibility
.equ PORTD7 = 7 ; Port D Data Register bit 7
.equ PD7 = 7 ; For compatibility
; DDRD - Port D Data Direction Register
.equ DDD0 = 0 ; Port D Data Direction Register bit 0
.equ DDD1 = 1 ; Port D Data Direction Register bit 1
.equ DDD2 = 2 ; Port D Data Direction Register bit 2
.equ DDD3 = 3 ; Port D Data Direction Register bit 3
.equ DDD4 = 4 ; Port D Data Direction Register bit 4
.equ DDD5 = 5 ; Port D Data Direction Register bit 5
.equ DDD6 = 6 ; Port D Data Direction Register bit 6
.equ DDD7 = 7 ; Port D Data Direction Register bit 7
; PIND - Port D Input Pins
.equ PIND0 = 0 ; Port D Input Pins bit 0
.equ PIND1 = 1 ; Port D Input Pins bit 1
.equ PIND2 = 2 ; Port D Input Pins bit 2
.equ PIND3 = 3 ; Port D Input Pins bit 3
.equ PIND4 = 4 ; Port D Input Pins bit 4
.equ PIND5 = 5 ; Port D Input Pins bit 5
.equ PIND6 = 6 ; Port D Input Pins bit 6
.equ PIND7 = 7 ; Port D Input Pins bit 7

View File

@ -0,0 +1,4 @@
fuses_lo = 0xAF
fuses_hi = 0x99
fuses_ext = 0xff
lock_byte = 0xff

View File

@ -0,0 +1,142 @@
; VIDEO COMPOSITE PAL IO DEVICE
; Implemented following timings in http://blog.retroleum.co.uk/electronics-articles/pal-tv-timing-and-voltages/
.include "atmega1284definition.asm"
; define constant
.equ SYNC_PIN = PD7 ; Sync pin is on Port D 7 (pin 21)
.equ VIDEO_PIN = PD6 ; Video pin is on Port D 6 (pin 20)
; start vector
.org 0x0000
rjmp main ; jump to main label
; main program
main:
sbi DDRD, SYNC_PIN ; set pin as output
sbi DDRD, VIDEO_PIN ; set pin as output
v_refresh_loop:
; start 5 long sync pulses
call long_sync
call long_sync
call long_sync
call long_sync
call long_sync
; end 5 long sync pulses
; start 5 short sync pulses
call short_sync
call short_sync
call short_sync
call short_sync
call short_sync
; end 5 short sync pulses
; start 304 picture lines
ldi r16, 2
h_picture_outer_loop:
ldi r17, 152 ; line counter
h_picture_loop:
; start line sync: 4uS, 96 cycles @ 24Mhz
cbi PORTD, SYNC_PIN ; sync goes low (0v) ; 2 cycle
ldi r18, 32 ; 1 cycle
l_sync_pulse_loop: ; requires 3 cpu cycles
dec r18 ; 1 cycle
brne l_sync_pulse_loop ; 2 cycle if true, 1 if false
sbi PORTD, SYNC_PIN ; sync goes high (0.3v)
; end line sync
; start back porch: 8uS, 192 cycles @ 24Mhz
ldi r18, 64 ; 1 cycle
l_sync_back_porch_loop:
dec r18 ; 1 cycle
brne l_sync_back_porch_loop ; 2 cycle if true, 1 if false
; end back porch
; start image: 52uS, 1247 cycles @ 24Mhz
; 3 bande da 416 cicli
sbi PORTD, VIDEO_PIN ; video goes high ; 2 cycle
ldi r18, 138 ; 1 cycle
l_sync_video_loop1:
dec r18 ; 1 cycle
brne l_sync_video_loop1 ; 2 cycle if true, 1 if false
cbi PORTD, VIDEO_PIN ; video goes low
ldi r18, 137 ; 1 cycle
l_sync_video_loop2:
dec r18 ; 1 cycle
brne l_sync_video_loop2 ; 2 cycle if true, 1 if false
sbi PORTD, VIDEO_PIN ; video goes high
ldi r18, 138 ; 1 cycle
l_sync_video_loop3:
dec r18 ; 1 cycle
brne l_sync_video_loop3 ; 2 cycle if true, 1 if false
cbi PORTD, VIDEO_PIN ; video goes low
; end image
dec r17 ; decrement line counter
brne h_picture_loop ; if not 0, repeat h_picture_loop
dec r16 ; decrement outside counter
brne h_picture_outer_loop ; if not 0, repeat h_picture_loop
; end picture lines
; start 6 short sync pulses
call short_sync
call short_sync
call short_sync
call short_sync
call short_sync
; end 6 short sync pulses
jmp v_refresh_loop
; end vertical refresh
long_sync:
; long sync: 30uS low (719 cycles @ 24Mhz), 2uS high (48 cycles @ 24Mhz)
cbi PORTD, SYNC_PIN ; sync goes low (0v) ; 2 cycle
ldi r18, 120 ; 1 cycle
long_sync_low_loop: ; requires 6 cpu cycles
nop ; 1 cycle
nop ; 1 cycle
nop ; 1 cycle
dec r18 ; 1 cycle
brne long_sync_low_loop ; 2 cycle if true, 1 if false
sbi PORTD, SYNC_PIN ; sync goes high (0.3v)
ldi r18, 16 ; 1 cycle
long_sync_high_loop: ; requires 3 cpu cycles
dec r18 ; 1 cycle
brne long_sync_high_loop ; 2 cycle if true, 1 if false
ret
short_sync:
; short sync: 2uS low (48 cycles @ 24Mhz), 30uS high
cbi PORTD, SYNC_PIN ; sync goes low (0v) ; 2 cycle
ldi r18, 16 ; 1 cycle
short_sync_low_loop: ; requires 3 cpu cycles
dec r18 ; 1 cycle
brne long_sync_low_loop ; 2 cycle if true, 1 if false
sbi PORTD, SYNC_PIN ; sync goes high (0.3v)
ldi r18, 120 ; 1 cycle
short_sync_high_loop: ; requires 6 cpu cycles
nop ; 1 cycle
nop ; 1 cycle
nop ; 1 cycle
dec r18 ; 1 cycle
brne short_sync_high_loop ; 2 cycle if true, 1 if false
ret

View File

@ -0,0 +1 @@
:00000001FF

View File

@ -0,0 +1,4 @@
:020000020000FC
:1000000000C0579A4F995F984F9B5F9A40E230E447
:1000100020E82A95F1F73A95D9F74A95C1F7F2CF3A
:00000001FF

View File

@ -87,7 +87,10 @@ class TerminalEmulator:
with open(path, "rb") as f:
byte = f.read(1)
while byte:
self.sendByte(byte)
# Check if terminal interface (Arduino) is busy
ser.write(b'\x01') # COMMAND_BUFFER
ser.read()
ser.write(byte)
byte = f.read(1)
except IOError as e:
w.move(0,0)

View File

@ -1,6 +1,6 @@
/**
* SPI SD-Card test sketch
* Reads the first 128 bytes from cf and prints it out as ascii characters in serial monitor at 9200 baud
* Reads the first 128 bytes from sdcard and prints it out as ascii characters in serial monitor at 9200 baud
*
* Implementation of the specification at http://elm-chan.org/docs/mmc/mmc_e.html
*/
@ -35,10 +35,41 @@ void setup() {
// CMD0 with CS low (Software reset). Means "Leave native mode and enter SPI mode"
digitalWrite(CS, LOW);
sendCommand(B01000000); // First two bits are always 01. Command is 0 (000000).
byte arg[] = {0x00,0x00,0x00,0x00};
sendCommand(B01000000, arg); // First two bits are always 01. Command is 0 (000000).
byte resp = receiveResponse();
Serial.println("Card response:");
Serial.print(" CMD0 response: ");
Serial.println(resp, HEX);
// Now card is in idle mode
// Send CMD8 (check voltage) to find if sd version is 2 or previous
byte arg2[] = {0x00,0x00,0x00,0x00};
sendCommand(B01001000, arg2); // CMD8
resp = receiveResponse();
Serial.print(" CMD8 response: ");
Serial.println(resp, HEX);
if (resp == 5) {
// CMD8 Illegal command: sd version 1.X
while(true) {
// Now send ACMD41. ACMD is a CMD55 followed by a CMDxx
byte arg3[] = {0x00,0x00,0x00,0x00};
sendCommand(B01110111, arg3); // CMD55
//resp = receiveResponse();
Serial.print(" CMD55 response: ");
Serial.println(resp, HEX);
byte arg4[] = {0x40,0x00,0x00,0x00};
sendCommand(B01101001, arg4); // CMD41
resp = receiveResponse();
Serial.print(" CMD41 response: ");
Serial.println(resp, HEX);
}
} else {
Serial.print("Sd version 2 not supported.");
}
digitalWrite(CS, HIGH);
}
@ -61,12 +92,12 @@ void clk() {
* This is ok, since the CRC field will not be checked in SPI mode.
* @param index: the command index byte. First two bytes are the sync bytes "01".
*/
void sendCommand(byte index) {
void sendCommand(byte index, byte arg[]) {
// Send command index (2+6=8 bits)
sendByte(index);
// Send argument (32 bit)
for(byte i=0; i<4; i++) {
sendByte(0);
sendByte(arg[i]);
}
// Send CRC with final stop bit (7+1=8 bits)
sendByte(B10010101); // We send always the CMD0 CRC, because is not checked in SPI mode
@ -80,6 +111,7 @@ void sendByte(byte b) {
for (byte i=0; i<8; i++) {
// If last bit is 1 set MOSI HIGH, else LOW
digitalWrite(MOSI, (b & B10000000) == B10000000 ? HIGH : LOW);
//Serial.print((b & B10000000) == B10000000 ? "1" : "0");
clk();
// Shift byte to have, in the next cycle, the next bit in last position
b = b << 1;
@ -103,11 +135,9 @@ byte receiveResponse() {
byte resp = 0;
// Read 8 bits
for (byte i=0; i<8; i++) {
if (digitalRead(MISO)) {
resp = resp | B00000001;
}
resp = resp << 1;
resp = resp | digitalRead(MISO);
clk();
}
return resp;
}